【题目】《基础教育课程改革纲要(试行)》将“具有良好的心理素质”列入新课程的培养目标.为加强心理健康教育工作的开展,不断提高学生的心理素质,九江市某校高二年级开设了《心理健康》选修课,学分为2分.学校根据学生平时上课表现给出“合格”与“不合格”两种评价,获得“合格”评价的学生给予50分的平时分,获得“不合格”评价的学生给予30分的平时分,另外还将进行一次测验.学生将以“平时分×40%+测验分×80%”作为“最终得分”,“最终得分”不少于60分者获得学分.
该校高二(1)班选修《心理健康》课的学生的平时分及测验分结果如下:
测验分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平时分50分人数 | 0 | 1 | 1 | 3 | 4 | 4 | 2 |
平时分30分人数 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
(1)根据表中数据完成如下2×2列联表,并分析是否有95%的把握认为这些学生“测验分是否达到60分”与“平时分”有关联?
选修人数 | 测验分 达到60分 | 测验分 未达到60分 | 合计 |
平时分50分 | |||
平时分30分 | |||
合计 |
(2)用样本估计总体,若从所有选修《心理健康》课的学生中随机抽取5人,设获得学分人数为,求的期望.
附:,其中
0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879/p> | 10.828 |
【答案】(1)有95%的把握认为学生“测验分是否达到60分”与“平时分”有关联;(2)4
【解析】
(1)根据数据填表,然后计算,可得结果.
(2)根据计算,可得未获得分数的人数,然后可知获得分数的概率,依据二项分布数学期望的计算方法,可得结果.
解:(1)根据表中数据统计,可得2x2列联表
选修人数 | 测验分 | 合计 | |
达到60分 | 未达到60分 | ||
平时分50分 | 13 | 2 | 15 |
平时分30分 | 2 | 3 | 5 |
合计 | 15 | 5 | 20 |
,
∴有95%的把握认为学生“测验分是否达到60分”与“平时分”有关联
(2)分析学生得分,,
,
平时分50分的学生中测验分只需达到50分,
而平时分30分的学生中测验分必须达到60分,才能获得学分
平时分50分的学生测验分未达到50分的只有1人,
平时分30分的学生测验分未达到60分的有3人
∴从这些学生中随机抽取1人,
该生获得学分的概率为
,.
科目:高中数学 来源: 题型:
【题目】中国“一带一路”战略构思提出后, 某科技企业为抓住“一带一路”带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设备能全部售完.
(1)求年利润 (万元)关于年产量(台)的函数关系式;
(2)年产量为多少台时 ,该企业在这一电子设备的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点P为两直线l1:3x+4y﹣2=0和l2:2x+y+2=0的交点.
(1)求过P点且与直线3x﹣2y+4=0平行的直线方程;
(2)求过原点且与直线l1和l2围成的三角形为直角三角形的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:()上横坐标为4的点到焦点的距离为5.
(1)求抛物线的方程;
(2)设直线与抛物线交于不同两点,若满足,证明直线恒过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线经过椭圆的右焦点.
(1)求实数的值;
(2)设直线与椭圆相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:的短轴长为2,倾斜角为的直线l与椭圆C相交于A,B两点,线段AB的中点为M,且点M与坐标原点O连线的斜率为.
(1)求椭圆C的标准方程;
(2)若,P是以AB为直径的圆上的任意一点,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com