精英家教网 > 高中数学 > 题目详情
14.设向量$\overrightarrow{a}$,$\overrightarrow{b}$的模分别为2和3,且夹角为60°,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.$\sqrt{13}$B.13C.$\sqrt{19}$D.19

分析 利用两个向量的数量积的定义求出$\overrightarrow{a}•\overrightarrow{b}$,再利用|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}•\overrightarrow{b}$,即可求出答案.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$的模分别为2和3,且夹角为60°,
∴$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=2×3×$\frac{1}{2}$=3,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2+2$\overrightarrow{a}•\overrightarrow{b}$=4+9+2×3=19,
∴|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{19}$,
故选:C.

点评 本题考查两个向量的数量积的定义,向量的模的定义,求向量的模的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=aex-x有两个零点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第4个个体编号为16.
1818  0792  4544  1716  5809  7983  8619
6206  7650  0310  5523  6405  0526  6238.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,边长为2的正方形A1ABB1所在平面与矩形ABCD所在平面相互垂直,且$AB=\frac{1}{2}BC$,E,F分别是AA1和BC的中点.
(1)证明:DF⊥平面A1AF;
(2)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若角α的终边经过点(-4,3),则tanα=(  )
A.$\frac{4}{3}$B.$-\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$sinx+siny=\frac{1}{3},cosx+cosy=\frac{1}{5}$,则cos(x-y)=-$\frac{208}{225}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在R上的函数f (x)是奇函数,且f(x)在(0,+∞)是增函数,f(3)=0,则不等式f(x)>0的解集为(-3,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin(2x+φ)($0<ϕ<\frac{π}{2}$),且$f(0)=\frac{1}{2}$.
(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数y=f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(理科)在平面直角坐标系中,x轴正半轴上有5个点,y轴正半轴有3个点,将x轴上这5个点和y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有30个.

查看答案和解析>>

同步练习册答案