精英家教网 > 高中数学 > 题目详情
7.已知数列{an}满足an=$\left\{\begin{array}{l}{n,n=2k-1}\\{{a}_{\frac{n}{2}},n=2k}\end{array}\right.$,其中,k∈N*,设f(n)=a1+a2+a3+a4+…+${a}_{{2}^{n}-2}$+${a}_{{2}^{n}-1}$+${a}_{{2}^{n}}$,则f(2016)-f(2014)的值为42014

分析 由递推公式得到f(n)-f(n-1)=4n-1,由此能求出f(2016)-f(2014)的值.

解答 解:∵an=$\left\{\begin{array}{l}{n,n=2k-1}\\{{a}_{\frac{n}{2}},n=2k}\end{array}\right.$,其中,k∈N*,f(n)=a1+a2+a3+a4+…+${a}_{{2}^{n}-2}$+${a}_{{2}^{n}-1}$+${a}_{{2}^{n}}$,
∴f(2)-f(1)=a1+a2+a3+a4-(a1+a2)=a3+a4=3+1=4,
f(3)-f(2)=a5+a6+a7+a8=5+3+7+1=42
f(4)-f(3)=a9+a10+…+a16=9+5+11+3+13+7+15+1=64=43

∴f(n)-f(n-1)=4n-1
∴f(2016)-f(2014)=42014
故答案为:42014

点评 本题考查函数值的求法,是中档题,解题时要认真审题,注意数列的递推公式和归纳总结的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.数列{an}满足:a1=0,a2=1,an=an-1+2an-2(n≥3)计一个算法,列出数列{an}的前20项,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$=$\sqrt{\frac{1}{{{a}_{n}}^{2}}+4}$,则通项公式an=$\sqrt{\frac{1}{4n-3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知曲线y=x3上过点(2,8)的切线方程为12x-ay+b=0,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:sin4θ+cos2θ+sin2θcos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=3,a2=5,an+2=3an+1+4an,(n∈N*
(I)求证数列{an+1+an}和{an+1-4an}都是等比数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sin($\frac{π}{3}$-α)=$\frac{1}{2}$,求cos2(α+$\frac{π}{3}$)•sin($\frac{2π}{3}$+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用图解法求下列线性规划问题:
(1)约束条件$\left\{\begin{array}{l}{x+y≤5}\\{x-y≤3}\\{x≥0}\\{y≥0}\\{\;}\end{array}\right.$,目标函数Zmax=2x+y;
(2)约束条件$\left\{\begin{array}{l}{2x+y≥4}\\{x+5y≥6}\\{x≥0}\\{y≥0}\end{array}\right.$,目标函数Zmin=3x+y;
(3)约束条件$\left\{\begin{array}{l}{2x-y-3≥0}\\{2x+3y-6≤0}\\{3x-5y-15≤0}\end{array}\right.$,目标函数Zmax=x+y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)若不等式|2x-1|+|x+2|≥m2+$\frac{1}{2}$m+2对任意实数x恒成立,求实数m的取值范围;
(2)设a,b,c大于0,且1≤$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$≤$\frac{2}{5}$(|2x-1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.

查看答案和解析>>

同步练习册答案