精英家教网 > 高中数学 > 题目详情

【题目】随着经济的发展,人民的收入水平逐步提高,为了解北京市居民的收入水平,某报社随机调查了名居民的月收入,得到如下的频率分布直方图:

(1)求的值及这名居民的平均月收入(同一组中的数据用该组区间的中点值作代表)

(2)①通过大数据分析,北京人的月收入服从正态分布,其中,求北京人收入落在的概率;

②将频率视为概率,若北京某公司一部门有人,记这人中月收入落在的人数为,求的数学期望.

附:若,则

【答案】(1);.(2)①,②.

【解析】分析:(1)由已知得则平均月收入

(2)①由题意结合正态分布的结论可知收入落在的概率为.

②由题意可得.

详解:(1)由已知得:

解之得

(2)①因为,所以

所以.

②由频率分布直方图可知由频率分布直方图可知

所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知复数是实数,是虚数单位.

(1)求复数

(2)若复数所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,MPC中点.求证:

(1)PA∥平面MDB;

(2)PDBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.

(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;

(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年4月的西安奔驰女车主哭诉维权事件引起了社会的广泛关注,某汽车4S店为了调研公司的售后服务态度,对5月份到店维修保养的100位客户进行了回访调查,每位客户用10分制对该店的售后服务进行打分.现将打分的情况分成以下几组:第一组[02),第二组[24),第三组[46),第四组[68),第五组[810],得到频率分布直方图如图所示.已知第二组的频数为10

1)求图中实数ab的值;

2)求所打分值在[610]的客户人数;

3)总公司规定,若4S店的客户回访平均得分低于7分,则将勒令其停业整顿.试用频率分布直方图的组中值对总体平均数进行估计,判断该4S店是否需要停业整顿.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某中学甲、乙两班各随机抽取 名同学,测量他们的身高(单位: ),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是( )

A. 甲班同学身高的方差较大 B. 甲班同学身高的平均值较大

C. 甲班同学身高的中位数较大 D. 甲班同学身高在 以上的人数较多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线 的焦点的直线与抛物线在第一象限的交点为,与抛物线准线的交点为 ,点在抛物线准线上的射影为,若 的面积为 .

( 1 ) 求抛物线的标准方程;

( 2 ) 过焦点的直线与抛物线交于两点,抛物线在点处的切线分别为,且相交于点,轴交于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生更多的了解数学史知识,某中学高二年级举办了一次追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

序号

分组(分数)

组中值

频数(人数)

频率

1

65

0.12

2

75

20

3

85

0.24

4

95

合计

50

1

1)填充频率分布表中的空格;

2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?

3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.

1)求比赛进行3个回合后,甲与乙的比分为的概率;

2表示3个回合后乙的得分,求的分布列与数学期望.

查看答案和解析>>

同步练习册答案