精英家教网 > 高中数学 > 题目详情

有5个男生和3个女生,从中选5人担任5门学科的课代表,要求必须有女生,且女生人数少于男生,则共有多少种不同的安排方法?

答案:
解析:

选排问题,情况复杂;可先选出5人,再进行排列,并可分为1女4男和2女3男两类,则选法有=45.

所以课代表不同安排方法有:45×=5400种.


练习册系列答案
相关习题

科目:高中数学 来源:101网校同步练习 高二数学 人教社(新课标B 2004年初审通过) 人教实验版 题型:044

有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:

(1)有女生但人数必须少于男生.

(2)某女生一定要担任语文科代表.

(3)某男生必须包括在内,但不担任数学科代表.

(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

科目:高中数学 来源:新课标高三数学组合、排列与组合的综合问题专项训练(河北) 题型:解答题

有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:
(1)有女生但人数必须少于男生.
(2)某女生一定要担任语文科代表.
(3)某男生必须包括在内,但不担任数学科代表.
(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

科目:高中数学 来源:2014届广东省东莞市高二下学期期中考试理科数学试卷(解析版) 题型:解答题

有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:

(1)有女生但人数必须少于男生.

(2)某女生一定要担任语文科代表.

(3)某男生必须包括在内,但不担任数学科代表.

(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:

(1)有女生但人数必须少于男生.

(2)某女生一定要担任语文科代表.

(3)某男生必须包括在内,但不担任数学科代表.

(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

同步练习册答案