精英家教网 > 高中数学 > 题目详情
函数y=x2-x3的单调增区间为    ,单调减区间为   
【答案】分析:先求导数y′,然后解不等式y′>0,y′<0,可得函数的增区间、减区间.
解答:解:y′=2x-3x2=-x(3x-2),
由y′>0,得0<x<,由y′<0,得x<0或x>
所以函数y=x2-x3的单调增区间为(0,),单调减区间为(-∞,0)和(,+∞).
故答案为:(0,);(-∞,0)和(,+∞).
点评:本题考查利用导数研究函数的单调性,属基础题,解决该类题目要注意定义域及多个增(减)区间的表示.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-x3的单调增区间为
(0,
2
3
(0,
2
3
,单调减区间为
(-∞,0)和(
2
3
,+∞)
(-∞,0)和(
2
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2-x3的单调增区间为
(0,
2
3
(0,
2
3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市潼南县柏梓中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:填空题

函数y=x2-x3的单调增区间为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市潼南县柏梓中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:填空题

函数y=x2-x3的单调增区间为   

查看答案和解析>>

同步练习册答案