精英家教网 > 高中数学 > 题目详情

关于的方程,给出下列四个题:
①存在实数,使得方程恰有2个不同的实根;
②存在实数,使得方程恰有4个不同的实根;
③存在实数,使得方程恰有5个不同的实根;
④存在实数,使得方程恰有8个不同的实根。
正确命题的序号为           

①②③④

解析试题分析:关于x的方程(x2-1)2-|x2-1|+k=0可化为(x2-1)2-(x2-1)+k=0(x≥1或x≤-1)(1)

或(x2-1)2+(x2-1)+k=0(-1<x<1)(2)
当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根
当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±
即原方程恰有4个不同的实根
当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根,∴四个命题都是真命题,故填写①②③④,
考点:本题主要是考查了分段函数,以及函数与方程的思想,数形结合的思想,同时考查了分析问题的能力,属于中档题
点评:解决该试题的关键是将方程根的问题转化成函数图象的问题,画出函数图象,结合图象可得结论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

函数的定义域是              。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数,若,则 的值等于              

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的定义域为             

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设奇函数的定义域为,当时,的图象如图,则不等式的解集是        .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设周期函数是定义在R上的奇函数,若的最小正周期为3,且满足,,则的取值范围是            .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数为常数),且,则____.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

.函数的奇偶性是         .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知定义在R上的奇函数,当x>0时,那么x<0时           .

查看答案和解析>>

同步练习册答案