精英家教网 > 高中数学 > 题目详情
已知点P(x1,y1)不在直线l:Ax+By+C=0(B≠0)上,则P在直线l上方的充要条件是______,P在直线l下方的充要条件是______.
直线l:Ax+By+C=0(B≠0)上点M,其横坐标x=x1时,纵坐标y=-
Ax1+C
B

点P在直线l的上方等价于点P在点M的上方,即y1>-
Ax1+C
B

Ax1+By1+C
B
>0,亦即B(Ax1+By1+C)>0.
所以P在直线l上方的充要条件是B(Ax1+By1+C)>0,同理P在直线l下方的充要条件是B(Ax1+By1+C)<0.
故答案为:B(Ax1+By1+C)>0; B(Ax1+By1+C)<0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(x1,y1)不在直线l:Ax+By+C=0(B≠0)上,则P在直线l上方的充要条件是
 
,P在直线l下方的充要条件是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)
的左焦点和右焦点,O是坐标系原点,且椭圆C的焦距为6,过F1的弦AB两端点A、B与F2所成△ABF2的周长是12
2

(1)求椭圆C的标准方程;
(2)已知点P(x1,y1),Q(x2,y2)是椭圆C上不同的两点,线段PQ的中点为M(2,1),求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省荆州中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(x1,y1),Q(x2,y2)(x1≠x2)是函数f(x)=x3+ax2+bx+c的图象上的两点,若对于任意实数x1,x2,当x1+x2=0时,以P,Q为切点分别作函数f(x)的图象的切线,则两切线必平行,并且当x=1时函数f(x)取得极小值1.
(1)求函数f(x)的解析式;
(2)若M(t,g(t))是函数g(x)=f(x)+3x-3(1≤x≤6)的图象上的一点,过M作函数g(x)图象的切线,切线与x轴和直线x=6分别交于A,B两点,直线x=6与x轴交于C点,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案