精英家教网 > 高中数学 > 题目详情
5.设min{p,q}表示p,q两者中的较小者,若函数f(x)=min{3-x,log2x},则f(x)的最大值为2,满足$f(x)<\frac{1}{2}$的集合为{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.

分析 利用一次函数、对数函数的图象画出函数f(x)=min{3-x,log2x}的图象,即可得出

解答 解:令3-x=log2x,解得x=2.如图所示,
由图象得:f(x)的最大值是2;
①当0<x<2时,log2x<3-x.由log2x<$\frac{1}{2}$,解得0<x<$\sqrt{2}$,
②当x>2时,3-x<log2x.由3-x<$\frac{1}{2}$,解得x>$\frac{5}{2}$.
∴f(x)<$\frac{1}{2}$的解集是{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.
故答案为2,{x|0<x<$\sqrt{2}$或x>$\frac{5}{2}$}.

点评 本题考查了一次函数、对数函数的图象、新定义、不等式的解集,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A、B,当∠AOB为锐角时,求k的取值范围.
(2)若$k=\frac{1}{2}$,P是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,$QA=AB=\frac{1}{2}PD$.
(1)证明:面PQC⊥面DQC;
(2)求面PAB与面DQC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}的前n项为和Sn,且a3-3a2=0,S2=12,数列{bn}中,b1=1,bn+1-bn=2.
(1)求数列{an},{bn}的通项an和bn
(2)设cn=an•bn,求数列{cn}的前N项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|2≤x≤8},B={x|1<x<6}且U=R,求集合A∪B,(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在同一坐标系中,y=2x与y=log2x的图象与一次函数y=-x+6的图象交于两点,则这两个交点的横坐标之和为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为${60°},|{\overrightarrow a}|=2,|{\overrightarrow b}|=6$,则$2\overrightarrow a-\overrightarrow b$在$\overrightarrow a$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等差数列{an}中a3+a11=40,则a4-a5+a6+a7+a8-a9+a10的值(  )
A.84B.72C.60D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若tanα-$\frac{1}{tanα}=\frac{3}{2},α∈({\frac{π}{4},\frac{π}{2}})$,则cos2α的值为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步练习册答案