分析 (1)根据数列的项和和之间的关系,即可求数列{an}的通项公式;
(2)bn=$\frac{({a}_{n}+2)•({a}_{n+1}+2)}{{a}_{n}}$=$\frac{2({3}^{n-1}+1)({3}^{n}+1)}{{3}^{n-1}}$,$\frac{1}{{b}_{n}}$=$\frac{1}{4}×(\frac{1}{{3}^{n-1}+1}-\frac{1}{{3}^{n}+1})$,累加即可求数列{$\frac{1}{{b}_{n}}$}的前n项和为Tn
解答 解:(1)由题意得an+1=2Sn+2,an=2Sn-1+2,(n≥2),
两式相减得an+1-an=2Sn-2Sn-1=2an,
则an+1=3an,n≥2,
所以当n≥2时,{an}是以3为公比的等比数列.
因为a2=2S1+2=4+2=6,满足$\frac{{a}_{2}}{{a}_{1}}=3$对任意正整数成立 {an}是首项为2,公比为3的等比数列,
∴数列{an}的通项公式;an=2×3n-1
(2)证明:bn=$\frac{({a}_{n}+2)•({a}_{n+1}+2)}{{a}_{n}}$=$\frac{2({3}^{n-1}+1)({3}^{n}+1)}{{3}^{n-1}}$,
$\frac{1}{{b}_{n}}$=$\frac{1}{4}×(\frac{1}{{3}^{n-1}+1}-\frac{1}{{3}^{n}+1})$,
Tn=$\frac{1}{4}$×[$\frac{1}{{3}^{0}+1}-\frac{1}{{3}^{1}+1}+\frac{1}{{3}^{1}+1}-\frac{1}{{3}^{2}+1}$+…+$\frac{1}{{3}^{n-1}+1}-\frac{1}{{3}^{n}+1}$]
=$\frac{1}{4}×(\frac{1}{{3}^{0}+1}-\frac{1}{{3}^{n}+1})=\frac{1}{8}-\frac{1}{4({3}^{n}+1)}$<$\frac{1}{8}$.
点评 本题考查了数列的递推式,裂项求和,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 6 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,+∞) | B. | (1,+∞) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{π}{2}$,π) | B. | ($\frac{π}{4}$,$\frac{3}{4}$π) | C. | (π,$\frac{3}{2}$π) | D. | ($\frac{3}{4}$π,$\frac{5}{4}$π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 60° | B. | 45° | C. | 30° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com