精英家教网 > 高中数学 > 题目详情
观察下列等式:1=12,2+3+4=32,3+4+5+6+7=52…,根据上述规律,第四个等式为
4+5+6+7+8+9+10=72
4+5+6+7+8+9+10=72
分析:第2个等式左边为自然数2到4的和,右边为3平方;第3个等式左边为自然数自然数3到7的和,右边为5平方;…故第i个等式左边为i起共2i-1个自然数的和,右边为2i-1的平方.所以第四个等式为4+5+6+7+8+9+10=72
解答:解:观察所给等式,得:
第2个等式左边为自然数2到4的和,右边为3平方;
第3个等式左边为自然数自然数3到7的和,右边为5平方;

故第i个等式左边为i起共2i-1个自然数的和,右边为2i-1的平方.
∴第四个等式为4+5+6+7+8+9+10=72
故答案为:4+5+6+7+8+9+10=72
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、[1]函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=
5

[2]观察下列等式:1=1,1-4=-(1+2),1-4+9=(1+2+3),1-4+9-16=-(1+2+3+4),…由此推测第n个等式为
1-4+9-16+…+(-1)n+1n2=(-1)n+1(1+2+3+…+n)
.(不必化简结果)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此规律,第n个等式可为
(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…•(2n-1)
(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…•(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
1=1                         13=1
1+2=3                       13+23=9
1+2+3=6                     13+23+33=36
1+2+3+4=10                  13+23+33+43=100
1+2+3+4+5=15                13+23+33+43+53=225

可以推测:13+23+33+…+n3=
n2(n+1)2
4
n2(n+1)2
4
.(n∈N*,用含有n的代数式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,照此规律,第五个等式应为
1-4+9-16+25=1+2+3+4+5
1-4+9-16+25=1+2+3+4+5

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:-1=-1,-1+3=2,-1+3-5=-3,-1+3-5+7=4,-1+3-5+7-9=-5,-1+3-5+7-9+11=6,…
(1)猜想反映一般规律的数学表达式;  (2)用数学归纳法证明该表达式.

查看答案和解析>>

同步练习册答案