精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=axsinxaR.

1)当时,fx0恒成立,求正实数a的取值范围;

2)当a≥1时,探索函数Fxfx)﹣cosx+a1在(0π)上的零点个数,并说明理由.

【答案】1;(2)见解析

【解析】

1)由已知分离参数后构造函数,转化为求解函数的最值或范围,结合导数可求;

2)由已知结合导数分析函数的性质,然后结合函数的零点判定定理可求.

解:(1)因为

所以

再令mxxcosxsinxm'xcosxxsinxcosxxsinx0

所以mx)在(0)上单调递减,

所以mxm0)=0.

所以g'x0,则gx)在(0)上单调递减,

所以gxg

所以a

a0

即正实数a的取值范围是(0].

2Fxfx)﹣cosx+a1axsinxcosx+a1

因为x∈(0π),

a≥1

Fx0x∈(0π)恒成立,

Fx)在区间(0π)单调递增;

F0)=a2Fπ)=a1+π0

故当1≤a2时,F0)=a20,此时Fx)在区间(0π)内恰好有1个零点;

a≥2时,F0)=a2≥0,此时Fx)在区间(0π)内没有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C).若四点中有且仅有三点在椭面C上.

1)求椭圆C的标准方程;

2)设O为坐标原点,F为椭圆C的右焦点,过点F的直线l分别与椭圆C交于MN两点,,求证:直线关于x轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于PQ两点.

(1)求曲线C的直角坐标方程及直线l的参数方程;

(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为F1F2,过点F1作圆x2+y2a2的切线交双曲线右支于点M,若tanF1MF22,又e为双曲线的离心率,则e2的值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形ABCD为等腰梯形,AB4ADDCCB2,△ADC沿AC折起,使得平面ADC⊥平面ABCEAB的中点,连接DEDB(如图2.

1)求证:BCAD

2)求直线DE与平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,曲线上任意一点到的距离等于该点到直线的距离.

(Ⅰ)求及曲线的方程;

(Ⅱ)若直线与椭圆只有一个交点,与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为.过焦点且垂直于轴的直线与椭圆相交所得的弦长为3,直线与椭圆相切.

1)求椭圆的标准方程;

2)设过点的直线与椭圆相交于两点,若,问直线是否存在?若存在,求直线的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公同决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为11万元/辆和8万元/辆的AB两款车型,根据以往这两种出租车车型的数据,得到两款出租车型使用寿命频数表如表:

1)填写如表,并判断是否有99%的把握认为出租车的使用寿命年数与汽车车有关?

2)以频率估计概率,从2020年生产的AB的车型中各随机抽1车,以X表示这2车中使用寿命不低于7年的车数,求X的分布列和数学期望;

3)根据公司要求,采购成本由出租公司负责,平均每辆出租每年上交公司6万元,其余维修和保险等费用自理,假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这100辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?

参考公式:,其中na+b+c+d.

参考数据:

查看答案和解析>>

同步练习册答案