精英家教网 > 高中数学 > 题目详情

【题目】如图,AB是⊙O的直径,C是圆周上不同于AB的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )

A. 4个B. 3个C. 2个D. 1个

【答案】A

【解析】

由题意得出三角形ABC是直角三角形,根据线面垂直的性质定理得出PA垂直于ACBC,从而得出两个直角三角形,又可证明BC垂直于平面PAC,从而得出三角形PBC也是直角三角形,从而问题解决.

AB是圆O的直径

∴∠ACB=90°即BCAC,三角形ABC是直角三角形

又∵PA⊥圆O所在平面,

∴△PAC,△PAB是直角三角形.

BC在这个平面内,

PABC 因此BC垂直于平面PAC中两条相交直线,

BC⊥平面PAC

∴△PBC是直角三角形.

从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是:4.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

(Ⅰ)请完成上面的列联表;

(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

(Ⅲ)若视频率为概率,在全校随机抽取4人,其中“认为作业量大”的人数记为,求的分布列及数学期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,当n≥2,n∈Z时,fn(x)表示fn1(x)的导函数,若输入函数f1(x)=sinx﹣cosx,则输出的函数fn(x)可化为(
A. sin(x+
B. sin(x﹣ )??
C.﹣ sin(x+
D.﹣ sin(x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为椭圆C1 (a>b>0)的上下焦点,其F1是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
(1)试求椭圆C1的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=k(x+t)(t≠0)交椭圆于A,B两点,若椭圆上一点P满足 ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的单调区间.

(2)当时,讨论函数图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求在区间上的取值范围.

)当时,,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良101﹣150为轻度污染;151﹣200为中度污染;201~300为重度污染;>300为严重污染. 一环保人士记录去年某地某月10天的AQI的茎叶图如图.
(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)
(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:

)根据茎叶图,计算甲班被抽取学生成绩的平均值及方差

)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|x﹣a|+|2x﹣a|,a<0. (Ⅰ)求函数f(x)的最小值;
(Ⅱ)若不等式f(x)< 的解集非空,求a的取值范围.

查看答案和解析>>

同步练习册答案