精英家教网 > 高中数学 > 题目详情

【题目】 表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:

(1)对一盏灯进行开灯或关灯一次叫做一次操作;

(2)灯在任何情况下都可以进行一次操作;对任意的,要求灯的左边有且只有是开灯状态时才可以对灯进行一次操作.如果所有灯都处于开灯状态,那么要把灯关闭最少需要_____次操作;如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.

【答案】3 21

【解析】

(1)利用列举法求得把灯关闭最少需要的操作次数.(2)先用列举法求得关闭前个灯最少需要的操作次数,然后乘以再加上,得到使所有灯都开着最少需要的操作次数.

(1)如果所有灯都处于开灯状态,那么要把灯关闭最少需要的操作如下,设为开灯,0为关灯:初始状态,操作如下,共次.

(2)①关闭前个灯最少需要的操作如下,设为开灯,0为关灯:初始状态,操作如下:,共次.

②此时前盏灯的状态如下:,操作次,变为,打开.

③将步骤①倒过来做一遍,打开前个灯,共次操作.

综上所述,如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要次操作

故答案为:(1). 3 (2). 21

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:万元)

1

3

4

7

表中的数据显示,xy之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.

回归直线的斜率和截距的最小二乘法估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高和体重数据如下表所示:

编号

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

体重

60

46

43

48

48

50

61

52

该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.

1)调查员甲计算得出该组数据的线性回归方程为,请你据此预报一名身高为的女高中生的体重;

2)调查员乙仔细观察散点图发现,这8名同学中,编号为14的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为的女高中生的体重;

3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.

附:对于一组数据,其回归方程的斜率和截距的最小二乘法估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,抛物线上横坐标为的点到焦点的距离为.

(Ⅰ)求抛物线的方程及其准线方程;

(Ⅱ)过的直线交抛物线于不同的两点,交直线于点,直线交直线于点. 是否存在这样的直线,使得? 若不存在,请说明理由;若存在,求出直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.

(1)求椭圆的方程和“相关圆”的方程;

(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的极小值为0,求的值;

(2),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,抛物线上的两个动点A,B始终满足∠AFB=60°,过弦AB的中点H作抛物线的准线的垂线HN,垂足为N,的取值范围为

A.(0,]B.[,+∞)

C.[1,+∞)D.(0,1]

查看答案和解析>>

同步练习册答案