精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3e|x|+a(e=2.71828…是自然对数的底数)的最小值为3.
(Ⅰ)求实数a的值;
(Ⅱ)已知b∈R且x<0,试解关于x的不等式 lnf(x)-ln3<x2+(2b-1)x-3b2
(Ⅲ)已知m∈Z且m>1.若存在实数t∈[-1,+∞),使得对任意的x∈[1,m],都有f(x+t)≤3ex,试求m的最大值.
分析:(Ⅰ)由3e|x|的最小值为3,可得函数f(x)的最小值为3+a=3,由此求得a的值.
(Ⅱ)由f(x)=3e|x|,x<0,可得lnf(x)=-x+ln3.不等式化为-x<x2+(2b-1)x-3b2,即(x+3b)(x-b)>0.再分当b≥0时,和b<0时两种情况,分别求得不等式的解集.
(Ⅲ)由题意可得x+t≥0,f(x+t)≤3ex,等价于 t≤1+lnx-x.原命题等价转化为:存在实数t∈[-1,+∞),使得不等式t≤1+lnx-x对任意x∈[1,m]恒成立.再利用导数求得h(x)=1+lnx-x的最小值为h(x)min=h(m)=1+lnm-m,由此求得h(m)≥-1的最大整数m的值.
解答:解:(Ⅰ)由于函数f(x)=3e|x|+a≥3e0+a=3+a (e=2.71828…是自然对数的底数),
且函数的最小值为3,
故有3+a=3,∴a=0.
(Ⅱ)由以上可得,f(x)=3e|x|
当x<0时,lnf(x)=ln(3e|x|)=ln3+|x|=-x+ln3.
故不等式 lnf(x)-ln3<x2+(2b-1)x-3b2 可化为-x<x2+(2b-1)x-3b2
即 x2+2bx-3b2>0,即(x+3b)(x-b)>0.
故当b≥0时,不等式的解集为{x|x<-3b }; b<0时,不等式的解集为{x|x<b}.
(Ⅲ)∵当t∈[-1,+∞)且x∈[1,m]时,x+t≥0,
∴f(x+t)≤3ex,等价于ex+t≤ex,等价于 t≤1+lnx-x.
∴原命题等价转化为:存在实数t∈[-1,+∞),使得不等式t≤1+lnx-x对任意x∈[1,m]恒成立.
令h(x)=1+lnx-x(x>0).
h(x)=
1
x
-1≤0
,∴函数h(x)在(0,+∞)为减函数.
又∵x∈[1,m],∴h(x)min=h(m)=1+lnm-m.
∴要使得对x∈[1,m],t值恒存在,只须1+lnm-m≥-1.
h(3)=ln3-2=ln(
1
e
3
e
)>ln
1
e
=-1
h(4)=ln4-3=ln(
1
e
4
e2
)<ln
1
e
=-1
,且函数h(x)在(0,+∞)为减函数,
∴满足条件的最大整数m的值为3.
点评:本题主要考查指数不等式、对数不等式的解法,函数的恒成立问题,利用导数研究函数的单调性,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案