精英家教网 > 高中数学 > 题目详情
20.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(-1,0)∪(3,+∞)

分析 先求出集合A,B,由此利用交集定义能求出A∩B.

解答 解:∵集合A={y|y=2x}={y|y>0},
B={x|x2-2x-3>0,x∈R}={x|x<-1或x>3},
∴A∩B={x|x>3}=(3,+∞).
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B-PE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知x,y∈R,满足x2+2xy+4y2=6,则z=x+y的取值范围为$[-\sqrt{6},\sqrt{6}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l经过点(0,-2),其倾斜角的大小是60°,则直线l与两坐标轴围成三角形的面积S等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=(x2-1)2+2的极值点是(  )
A.x=1B.x=-1或0C.x=-1或1或0D.x=0或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.运行以下程序框图,若输入的$x∈[{-\frac{π}{2},\frac{π}{2}}]$,则输出的y的范围是(  )
A.[-1,1]B.[-1,0]C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,已知角α的终边经过点P(-3,4)
(1)求sinα和cosα的值;
(2)化简并求值:$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为$4\sqrt{3}$,则这个圆锥的体积为(  )
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{32\sqrt{35}π}}{27}$C.$\frac{{128\sqrt{2}π}}{81}$D.$\frac{{8\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.椭圆的方程为$\frac{x^2}{4}+{y^2}=1$,则此椭圆上的点到直线2x-3y+6=0距离的最小值为$\frac{6-\sqrt{13}}{\sqrt{13}}$.

查看答案和解析>>

同步练习册答案