精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=($\frac{1}{2}$)|x-1|+a|x+2|.当a=1时,f(x)的单调递减区间为[1,+∞);当a=-1时,f(x)的单调递增区间为[-2,1],f(x)的值域为[$\frac{1}{8}$,8].

分析 当a=1时,f(x)=($\frac{1}{2}$)|x-1|+|x+2|,令u(x)=|x-1|+|x+2|=$\left\{\begin{array}{l}{2x+1,x≥1}\\{3,-2≤x≤1}\\{-2x-1,x<-2}\end{array}\right.$,利用复合函数的单调性判断即可;当a=-1时,f(x)=($\frac{1}{2}$)|x-1|-|x+2|令u(x)=|x-1|-|x+2|=$\left\{\begin{array}{l}{-3,x≥1}\\{-2x-1,-2≤x<2}\\{3,x≤-2}\end{array}\right.$,根据复合函数的单调性可判断即可.

解答 解:(1)∵f(x)=($\frac{1}{2}$)|x-1|+a|x+2|
∴当a=1时,f(x)=($\frac{1}{2}$)|x-1|+|x+2|
令u(x)=|x-1|+|x+2|=$\left\{\begin{array}{l}{2x+1,x≥1}\\{3,-2≤x≤1}\\{-2x-1,x<-2}\end{array}\right.$,
∴u(x)在[1,+∞)单调递增,
根据复合函数的单调性可判断:f(x)的单调递减区间为[1,+∞),
(2)当a=-1时,f(x)=($\frac{1}{2}$)|x-1|-|x+2|
令u(x)=|x-1|-|x+2|=$\left\{\begin{array}{l}{-3,x≥1}\\{-2x-1,-2≤x<2}\\{3,x≤-2}\end{array}\right.$,
u(x)在[-2,1]单调递减,
∴根据复合函数的单调性可判断:f(x)的单调递增区间为[-2,1],f(x)的值域为[$\frac{1}{8}$,8].
故答案为:[1,+∞);[-2,1];[$\frac{1}{8}$,8].

点评 本题考查了函数的单调性,复合函数的单调性的判断,属于中档题,关键是去绝对值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在直观图如图中,四边形O′A′B′C′为菱形且边长为2cm,则在xOy坐标系中原四边形OABC为矩形(填形状),面积为8cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{1}{{\sqrt{2-{{log}_2}(1-x)}}}$的定义域为(  )
A.(-3,+∞)B.$(-∞,\frac{1}{2})$C.(-3,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:2x2-3x-2≥0,q:x2-2(a-1)x+a(a-2)≥0,若p是q充分不必要条件,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A={x|x+2≤0或x-3≥0},B={x|2a-1≤x≤a+2},若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.2≤|x|+|y|≤3,则x2+y2-2x的取值范围是(  )
A.[$\frac{\sqrt{2}-2}{2}$,3]B.[$\frac{\sqrt{2}}{2}$,4]C.[-$\frac{1}{2}$,15]D.[$\frac{1}{2}$,16]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式中正确的是(  )
A.0=∅B.∅={0}C.0∈∅D.∅⊆{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是定义域在R上的奇函数,当x≤0时,f(x)=2x+2x+b(b为常数),则f(1)=(  )
A.3B.$\frac{5}{2}$C.-3D.$-\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,B为椭圆E的上顶点,且$\overrightarrow{B{F}_{1}}$⊥$\overrightarrow{B{F}_{2}}$,若△BF1F2的面积是9,求椭圆的短轴长.

查看答案和解析>>

同步练习册答案