精英家教网 > 高中数学 > 题目详情
函数f(x)=x+
ax
(x>0,a>0).
(1)当a=1时,证明:f(x)在(1,+∞)上是增函数;
(2)若f(x)在(0,2)上是减函数,求a的取值范围.
分析:(1)当a=1时,f′(x)=1-
1
x2
=
x2-1
x2
,由x>1可得f′(x)>0,从而得f(x)在(1,+∞)上是增函数.
(2)先求出f′(x)=1-
a
x2
=
x2-a
x2
,由题意可得当x∈(0,2)时,x2-a≤0恒成立,故a≥22=4.
解答:证明:(1)当a=1时,f(x)=x+
1
x
(x>0,a>0),f′(x)=1-
1
x2
=
x2-1
x2
.…(2分)
∵x>1,∴x2>1,即 x2-1>0,∴
x2-1
x2
>0,即 f′(x)>0,…(5分)
∴f(x)在(1,+∞)上是增函数.   …(6分)
(2)f′(x)=1-
a
x2
=
x2-a
x2
,…(7分)
使f(x)在(0,2)上是减函数,则当x∈(0,2)时,x2-a≤0恒成立,…(9分)
即a≥x2恒成立,即a≥22=4,∴a≥4.    …(12分)
点评:本题主要考查利用导数研究函数的单调性,以及函数的恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面对命题“函数f(x)=x+
1
x
是奇函数”的证明不是综合法的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

分段函数f(x)=
x,x>0
-x,x≤0
可以表示为f(x)=|x|,同样分段函数f(x)=
x ,x≤3
3 ,x>3
可以表示为f(x)=
1
2
(x+3-|x-3|),仿此,分段函数f(x)=
3 ,x<3
x ,x≥3
可以表示为f(x)=
1
2
(x+3-|x-3|)
1
2
(x+3-|x-3|)
,分段函数f(x)=
a ,x≤a
x ,a<x<b
b ,x≥b
可以表示为f(x)=
1
2
(a+b+|x-a|-|x-b|)
1
2
(a+b+|x-a|-|x-b|)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案