精英家教网 > 高中数学 > 题目详情
19.设a,b,c∈R,且a>b,则下列命题一定正确的是(  )
A.ac>bcB.ac2≥bc2C.$\frac{1}{a}$<$\frac{1}{b}$D.$\frac{a}{b}$>1

分析 根据不等式的基本性质,及幂函数的单调性,判断四个答案的真假,可得结论.

解答 解:∵a>b,
当c≤0时,ac≤bc,故A错误;
当c=0时,ac2=bc2,当c≠0时,ac2>bc2,故B正确;
a>0>b时,$\frac{1}{a}$>$\frac{1}{b}$,故C错误;
a>0>b时,$\frac{a}{b}$<0,故D错误;
故选:B

点评 本题以命题的真假判断与应用为载体,考查了不等式的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设命题p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命题q:?x>0,x+$\frac{1}{x}$≥2,则下列命题为真命题的是(  )
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,正方体ABCD-A1B1C1D1中,E是棱BC的中点,F是侧面BCC1B1上的动点,且A1F∥平面AD1E,则直线A1F与平面BCC1B1所成的角的正切值t构成的集合是(  )
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察下列式子:1+$\frac{1}{{2}^{2}}$<1+$\frac{1}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<1+$\frac{2}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<1+$\frac{3}{4}$,…,根据上述规律,第n个不等式应该为1+$\frac{1}{{2}^{2}}$+$\frac{{1}^{\;}}{{3}^{2}}$+…+$\frac{1}{(n+1)^{2}}$<1+$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:若x>0,则函数y=x+$\frac{1}{2x}$的最小值为1,命题q:若x>1,则x2+2x-3>0,则下列命题是真命题的是(  )
A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=2+\frac{4}{5}t}\\{y=1+\frac{3}{5}t}\end{array}\right.$(t为参数),以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)将曲线C的极坐标方程化为直角坐标方程、直线l的参数方程化为普通方程;
(2)若直线l与曲线C交于M、N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题¬p:?x∈R,都有x2-4x+4>0,命题q:?x∈R,使sinx=$\frac{1}{4}$,则下列命题为假命题的是(  )
A.(¬p)∨qB.p∧qC.p∨qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=$\sqrt{3}$,AB=$\sqrt{2}$,AC=2,A1C1=1,$\frac{BD}{DC}$=$\frac{1}{2}$.
(1)证明:平面A1AD⊥平面BCC1B1
(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,对大于等于2的自然数m的n次幂进行如图方式的“分裂”,如23的“分裂”中最大的数是5,34的“分裂”中最大的数是29,那么20163的“分裂”中最大的数是20162+2015.(写出算式即可)

查看答案和解析>>

同步练习册答案