精英家教网 > 高中数学 > 题目详情

函数数学公式的图象与直线y=k的图象有一个公共点,则实数k的取值范围是


  1. A.
    0<k<1
  2. B.
    k≥1
  3. C.
    k≥1或k=0
  4. D.
    k∈R
C
分析:先画出函数的图象,据图判断符合图象与直线y=k的图象有一个公共点的a的值的范围.
解答:解:画出函数的图象,如图.再画出直线y=k,
当k=0或k≥1时,它们只有一个交点.
故符合条件的实数a的取值范围是k=0或k≥1.
故选C.
点评:本题是分段函数的问题,按照绝对值里的数的符号,分段求函数,再求符合条件的a值范围.解答关键是图象法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=ax2+2x+c(c>0)的导函数的图象与直线y=2x平行,若二次函数图上的动点P到直线y=2x的最小距离为
5
,则二次函数的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x
.若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)在(-∞,1)上单调递减,(1,+∞)上单调递增,最小值为m-1(m≠0),且y=g(x)的导函数的图象与直线y=2x平行,设f(x)=
g(x)
x

(Ⅰ)若曲线y=f(x)上的点P到点Q(0,-2)的距离的最小值为
2
,求m的值;
(Ⅱ)若m=1,方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足:f(0)=2,f(x)=f(-2-x),导函数的图象与直线y=-
x
2
垂直
(1)求f(x)的解析式
(2)若函数g(x)=
f(x)-m
x
在(0,2)上是减函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案