精英家教网 > 高中数学 > 题目详情

已知命题p:函数f(x)=loga|x|在区间(0,+∞)上单调递增,命题q:关于x的方程x2+2x+loga23=0的解集只有一个子集,若“p或q”为真,“¬p或¬q”也为真,求实数a的取值范围.

解:命题P为真,a>1;
∵关于x的方程x2+2x+loga23=0的解集只有一个子集,∴方程的解集为∅,
=-x2-2x=-(x+1)2+1≤1,
命题q为真,1<a<23,
∵“p或q”为真,“¬p或¬q”也为真,根据复合命题真值表命题P、q一真一假,

∴a≥23,
故实数a的取值范围是a≥23.
分析:先求出命题P、q分别为真命题的条件,再根据复合命题真值表求解即可.
点评:本题借助考查复合命题的真假,考查对数函数的性质.
pqP∧qP∨q¬p真真真真假真假假真假假真假真真假假假假真
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(m-2)x为增函数,命题q:“?x0∈R,x02+2mx0+2-m=0”,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=x2-2x+
12
a
的图象与x轴有交点,命题q:f(x)=(2a-1)x为R上的减函数,则p是q的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=
1-x3
,实数m满足不等式f(m)<2,命题q:实数m使方程2x+m=0(x∈R)有实根.若命题p、q中有且只有一个真命题,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(a-1)x+a在(-∞,+∞)上是增函数;命题q:
32-a
>2
.若命题“p或q”为真,“p且q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:函数f(x)=(11+a-2a2x是R上单调递增的指数函数.
命题q:关于x的不等式x2-(3a+2)x+a2≥0的解集为R.
若命题“p或q”为真命题,且命题“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案