精英家教网 > 高中数学 > 题目详情
设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局.在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为.比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束.
(1)求只进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为ξ,求ξ的概率分布列和数学期望Eξ.
【答案】分析:(1)只进行三局比赛,即丙获胜比赛就结束,由互斥,独立事件的概率公式可得;(2)由题意可得ξ=2,3,4,分别可得其概率,可得分布列,可得期望.
解答:解:(1)由题意只进行三局比赛,即丙获胜比赛就结束,
故可得所求的概率为
(2)由题意可得ξ=2,3,4,且

故ξ的分布列为:
ξ234
P
故数学期望
点评:本题考查离散型随机变量及其分布列,以及数学期望的求解,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局.在一局比赛中,甲胜乙的概率为
3
5
,甲胜丙的概率为
3
4
,乙胜丙的概率为
2
3
.比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束.
(1)求只进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为ξ,求ξ的概率分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

相关部门对跳水运动员进行达标定级考核,有A、B两套动作,完成每套动作成绩在9.50分及以上的定为该套动作合格,完成A动作合格的才能进行B动作的考核,两套动作的完成过程相互独立,并规定:
①A、B两套动作均合格者定为一级运动员;
②仅A动作合格,而B动作不合格者定为二级运动员;
③A动作不合格的予定级.
根据以往训练的统计知,甲、乙、丙三名运动员完成A动作合格的概率分别为0.5,0.6,0.4;完成B动作合格的概率分别为0.6,0.5,0.75.
(I)求经过此次考核,甲、乙两名运动员中恰好有1人被定为一级运动员,有1人被定为二级运动员的概率;
(II)设甲、乙、丙三人完成A动作合格的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年重庆市高三第三次(5月)月考理科数学试卷(解析版) 题型:解答题

设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局。在一局比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为。比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束。

(1)求只进行了三局比赛,比赛就结束的概率;

(2)记从比赛开始到比赛结束所需比赛的局数为,求的概率分布列和数学期望

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设甲、乙、丙三人进行围棋比赛,每局两人参加,没有平局.在一局比赛中,甲胜乙的概率为
3
5
,甲胜丙的概率为
3
4
,乙胜丙的概率为
2
3
.比赛顺序为:首先由甲和乙进行第一局的比赛,再由获胜者与未参加比赛的选手进行第二局的比赛,依此类推,在比赛中,有选手获胜满两局就取得比赛的胜利,比赛结束.
(1)求只进行了三局比赛,比赛就结束的概率;
(2)记从比赛开始到比赛结束所需比赛的局数为ξ,求ξ的概率分布列和数学期望Eξ.

查看答案和解析>>

同步练习册答案