【题目】如图,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求证:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由直线与平面平行的性质可得:由AD//平面BCC1B1,有AD//BC,同时AD平面ADD1A1,可得BC//平面ADD1A1;
(2)由(1)知AD//BC,因为AD⊥DB,所以BC⊥DB,同时由直四棱柱性质可得DD1⊥BC,BC⊥平面BDD1B1,可得证明.
解:(1)因为AD//平面BCC1B1,AD平面ABCD,平面BCC1B1∩平面ABCD=BC,
所以AD//BC.
又因为BC平面ADD1A1,AD平面ADD1A1,
所以BC//平面ADD1A1.
(2)由(1)知AD//BC,因为AD⊥DB,所以BC⊥DB,
在直四棱柱ABCD-A1B1C1D1中DD1⊥平面ABCD,BC底面ABCD,
所以DD1⊥BC,
又因为DD1平面BDD1B1,DB平面BDD1B1,DD1∩DB=D,
所以BC⊥平面BDD1B1,
因为BC平面BCC1B1,
所以平面BCC1B1⊥平面BDD1B1
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,底面是直角梯形,,,且.点是线段上一点,且.
(1)求证:平面平面.
(2)若,在线段上是否存在一点,使得到平面的距离为?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O1与圆O:x2+y2=r(r>0)交于点P(﹣1,y0).且关于直线x+y=1对称.
(1)求圆O及圆O1的方程:
(2)在第一象限内.圆O上是否存在点A,过点A作直线l与抛物线y2=4x交于点B,与x轴交于点D,且以点D为圆心的圆过点O,A,B?若存在.求出点A的坐标;若不存在.说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
某投资公司在2010年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利,也可能亏损,且这两种情况发生的概率分别为和;
项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利,可能亏损,也可能不赔不赚,且这三种情况发生的概率分别为、和
(Ⅰ)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(Ⅱ)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?
(参考数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,如图,已知椭圆E:的左、右顶点分别为、,上、下顶点分别为、.设直线倾斜角的余弦值为,圆与以线段为直径的圆关于直线对称.
(1)求椭圆E的离心率;
(2)判断直线与圆的位置关系,并说明理由;
(3)若圆的面积为,求圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com