精英家教网 > 高中数学 > 题目详情

【题目】已知函数若对任意都有成立则实数的取值范围是( )

A.B.C.D.

【答案】D

【解析】

试题求函数f(x)定义域,及f(﹣x)便得到f(x)为奇函数,并能够通过求f′(x)判断f(x)在R上单调递增,从而得到sinθ>m﹣1,也就是对任意的都有sinθ>m﹣1成立,根据0<sinθ≤1,即可得出m的取值范围.

f(x)的定义域为R,f(﹣x)=﹣f(x);

f′(x)=ex+e﹣x>0;

∴f(x)在R上单调递增;

f(sinθ)+f(1﹣m)>0得,f(sinθ)>f(m﹣1);

∴sinθ>m﹣1;

即对任意θ都有m﹣1<sinθ成立;

∵0<sinθ≤1;

∴m﹣1≤0;

实数m的取值范围是(﹣∞,1].

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在点处切线的斜率为4,求实数的值;

(2)求函数的单调区间;

(3)若函数上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的定义域;

2)判断的奇偶性;

3)求使x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:

1)共有多少种方法?

2)若每个盒子不空,共有多少种不同的方法?

3)恰有一个盒子不放球,共有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的参数方程为 (θ为参数),直线l的极坐标方程为ρcos=2.

(1)写出曲线C的普通方程和直线l的直角坐标方程;

(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).

1)将V表示成r的函数Vr),并求该函数的定义域;

2)讨论函数Vr)的单调性,并确定rh为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面的菱形, .

(1)证明:平面平面.

(2)若,直线与平面所成的角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,则下列说法正确的是( )

A. 数列的前项和为 B. 数列的通项公式为

C. 数列为递增数列 D. 数列是递增数列

查看答案和解析>>

同步练习册答案