精英家教网 > 高中数学 > 题目详情

【题目】,其中,曲线在点处的切线与轴相交于点.

(1)确定的值;

(2)求函数的单调区间与极值.

【答案】1a2)极小值26ln 3. 极大值f(2)6ln 2f(x)(0,2)(3,+∞)上为增函数;

2<x<3时,f′(x)<0,故f(x)(2,3)上为减函数.

【解析】试题分析:(1)求出导数,得,写出题中切线方程,令,则,由此可得;(2)解不等式得增区间,解不等式得减区间; 的点就是极值点,由刚才的单调性可知是极大值点还是极小值点.

试题解析:(1)因为

,得

所以曲线在点处的切线方程为

由点在切线上,可得,解得

2)由(1)知, ),

,解得

时, ,故的递增区间是

时, ,故的递减区间是

由此可知处取得极大值

处取得极小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)求的最小值

(2)记的最小值为,已知函数,若对于任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知右焦点椭圆关于直线对称的图形过坐标原点.

1)求椭圆方程;

(2)过不垂直于的直线椭圆两点,点的对称点为证明直线的交点为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,ADBCAD=AB=DC=BC=1EPC的中点,平面PAC平面ABCD

1)证明:ED平面PAB

2)若PC=2PA=,求二面角APCD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知数列,且直线

⑴求数列通项公式;

函数,求函数最小值;

表示数列和,问:是否存在关于的整使得于一切小于2的自然数成立?若存在,写出解析式,并加以证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,底面为正三角形,分别是棱的中点,且.

)求证:

)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:函数是偶函数;

(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图像(草图),并写出函数的值域;

(3)在同一坐标系中画出直线,观察图像写出不等式的解集.

查看答案和解析>>

同步练习册答案