【题目】设,其中,曲线在点处的切线与轴相交于点.
(1)确定的值;
(2)求函数的单调区间与极值.
【答案】(1)a=(2)极小值2+6ln 3. 极大值f(2)=+6ln 2,f(x)在(0,2),(3,+∞)上为增函数;
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数.
【解析】试题分析:(1)求出导数,得,写出题中切线方程,令,则,由此可得;(2)解不等式得增区间,解不等式得减区间; 的点就是极值点,由刚才的单调性可知是极大值点还是极小值点.
试题解析:(1)因为,
故.
令,得, ,
所以曲线在点处的切线方程为,
由点在切线上,可得,解得.
(2)由(1)知, (),
.
令,解得, .
当或时, ,故的递增区间是, ;
当时, ,故的递减区间是.
由此可知在处取得极大值,
在处取得极小值.
科目:高中数学 来源: 题型:
【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.
(1)求椭圆的方程;
(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称点为,证明:直线与轴的交点为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中点,平面PAC⊥平面ABCD.
(1)证明:ED∥平面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,且点在直线上.
⑴求数列的通项公式;
⑵若函数(,且),求函数的最小值;
⑶设,表示数列的前项和,试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)证明:函数是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图像(草图),并写出函数的值域;
(3)在同一坐标系中画出直线,观察图像写出不等式的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com