精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R)
(1)若函数f(x)的图象上点P(1,m)处的切线方程为3x-y+b=0,求m的值.
(2)若函数f(x)在(1,2)内是增函数,求a的取值范围.
分析:(1)由f(x)的解析式求出f(x)的导函数,把P的横坐标x=1代入导函数中求出的导函数值即为过P切线方程的斜率,又由切线方程得到切线的斜率为3,让求出的导函数值等于3列出关于a的方程,求出方程的解即可得到a的值,把求出的a的值代入,确定出f(x),把x=1代入即可求出m的值;
(2)求出f(x)的导函数,由已知f(x)在(1,2)内是增函数,得到导函数在(1,2)内恒大于等于0,解出a小于等于一个关系式,设此关系式为一个函数y,根据y在(1,2)也是增函数,由自变量x的范围求出y的值域,即可单调y的最小值,让a小于y的最小值即可得到a的取值范围.
解答:解:(1)∵f(x)=
2
3
x3-2ax2-3x,
∴f′(x)=2x2-4ax-3,
则过点P(1,m)的切线斜率为k=f′(1)=-1-4a,
又∵切线方程为3x-y+b=0,
∴-1-4a=3,即a=-1
∴f(x)=
2
3
x3+2x2-3x,
又∵P(1,m)在f(x)的图象上,
∴m=-
1
3

(2)∵函数f(x)在(1,2)内是增函数,
∴f′(x)=2x2-4ax-3≥0对一切x∈(1,2)恒成立,
即4ax≤2x2-3,
∴a≤
x
2
-
3
4x

∵y=
x
2
-
3
4x
在(1,2)内是增函数,
x
2
-
3
4x
∈(-
1
4
5
8
),
∴a≤-
1
4
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握函数的单调性与导数之间的关系,掌握不等式恒成立时满足的条件,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案