精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确的个数为(

①两个有共同始点且相等的向量,其终点可能不同;

②若非零向量共线,则四点共线;

③若非零向量共线,则

④四边形是平行四边形,则必有

,则方向相同或相反.

A.B.C.D.

【答案】B

【解析】

根据相等向量的定义判断①的真假;根据共线向量的定义判断②的真假;根据共线向量的等价条件判断③的真假;根据相等向量的定义判断④的真假;取判断⑤的真假.

①相等向量是大小相等、方向相同的向量,如果两个相等向量起点相同,则由定义知终点必相同,命题①是假命题;

②共线向量是基线平行或重合的向量,若非零向量共线且直线平行时,四点不共线,命题②是假命题;

③若非零向量共线,则存在非零实数,使得命题③是假命题;

④四边形是平行四边形,则,由相等向量的定义可知命题④是真命题;

⑤若为非零向量,,则方向无法确定,命题⑤是假命题.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.

(1)求椭圆的方程;

(2)已知是椭圆上的两点,是椭圆上位于直线两侧的动点.

①若直线的斜率为,求四边形面积的最大值;

②当运动时,满足,试问直线的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:是正实数,当时,,则称是“-数列”.已知数列是“-数列”.

(Ⅰ)若,写出的所有可能值;

(Ⅱ)证明:是等差数列当且仅当单调递减;

(Ⅲ)若存在正整数,对任意正整数,都有,证明:是数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为矩形,平面ABCD⊥平面ABEFCE的中点,且AEBE

1)求证:AE∥平面BFD

2)求证:BFAE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点处的切线方程;

2)若函数,求的单调区间;并证明:当时,

3)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1),求函数的单调区间;

(2)的极小值点,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论单调区间;

(Ⅱ)若直线是函数图象的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量cosx+sinx1),sinx),函数

1)若fθ)=3θ∈(0π),求θ

2)求函数fx)的最小正周期T及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若是偶函数,求的值;

2)若存在,使得成立,求实数的取值范围;

3)设函数,若有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案