精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,倾斜角为 的直线l与曲线C: ,(α为参数)交于A,B两点,且|AB|=2,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是

【答案】ρ(cosθ﹣sinθ)=1
【解析】解:设倾斜角为 的直线l的方程为y=x+b,
曲线C: (α为参数),即 (x﹣2)2+(y﹣1)2=1,表示以(2,1)为圆心、半径等于1的圆.
由于弦长|AB|=2,正好等于直径,故圆心(2,1)在直线l上,故有1=2+b,解得b=﹣1,
故直线l的方程为 y=x﹣1,即x﹣y﹣1=0.
再根据极坐标与直角坐标的互化公式可得ρcosθ﹣ρsinθ﹣1=0,即ρ(cosθ﹣sinθ)=1
所以答案是:ρ(cosθ﹣sinθ)=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足,则称函数为“函数”.

试判断是否为“函数”,并说明理由;

函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;

条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某礼品店要制作一批长方体包装盒,材料是边长为的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是的正方形,然后在余下两个角处各切去一个长、宽分别为的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.

(1)求包装盒的容积关于的函数表达式,并求函数的定义域;

(2)为多少时,包装盒的容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=exg(x)=xbb∈R.

(1)若函数f (x)的图象与函数g(x)的图象相切,求b的值;

(2)设T(x)=f (x)+ag(x),a∈R,求函数T(x)的单调增区间;

(3)h(x)=|g(x)|·f (x),b1.若存在x1x2 [0,1],使|h(x1)-h(x2)|1成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abcacosBbcosA

(1)求 的值

(2)若sin A,求sin(C) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙3人投篮,投进的概率分别是.

(Ⅰ)3人各投篮1,3人都没有投进的概率;

(Ⅱ)表示乙投篮3次的进球数,求随机变量的概率分布及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列命题中正确的个数是( )

时,函数上是单调增函数;

时,函数上有最小值;

函数的图象关于点对称;

方程可能有三个实数根.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数.
(1)证明:an+2﹣an
(2)是否存在λ,使得{an}为等差数列?并说明理由.

查看答案和解析>>

同步练习册答案