精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系中,曲线的参数方程为为参数);在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)求直线被曲线截得的弦长.

【答案】(1);(2)

【解析】分析(1)把曲线的参数方程利用同角三角函数的平方关系消去参数,化为普通方程,再根据,得到直线的直角坐标方程;(2)曲线的圆心到直线的距离,半径,根据勾股定理可得直线被曲线截得的弦长为 .

详解(1)∵ 曲线的参数方程为为参数),

∴ 消去参数得到曲线的普通方程为

∵ 直线的极坐标方程为

∴ 直线的直角坐标方程为

(2)∵ 曲线的圆心到直线的距离,半径

∴ 直线被曲线截得的弦长为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆和直线l:

(1)证明:不论取何值时,直线和圆总有两个不同的交点;

(2)求当取何值时,直线被圆截得的弦最短,并求最短的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,且z=ax+3y的最小值为7,则a的值为(
A.1
B.2
C.﹣2
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为.现有件产品,其中件是一等品, 件是二等品.

(Ⅰ)随机选取件产品,设至少有一件通过检测为事件,求事件的概率;

(Ⅱ)随机选取件产品,其中一等品的件数记为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为3的正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图(1)将△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,连结A1B、A1P(如图(2)).
(1)求证:A1E⊥平面BEP;
(2)求二面角B﹣A1P﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(1)请用相关系数说明之间是否存在线性相关关系(当时,说明之间具有线性相关关系);

(2)根据(1)的判断结果,建立之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).

附参考公式:回归方程中最小二乘估计分别为

,相关系数

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角三角形ABC的斜边长AB="2," 现以斜边AB为轴旋转一周,得旋转体,当∠A=30°时,求此旋转体的体积与表面积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)利用绝对值及分段函数知识,将函数的解析式写成分段函数;

(2)在给出的坐标系中画出的图象,并根据图象写出函数的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.
(Ⅰ)M为曲线C1上的动点,点P在线段OM上,且满足|OM||OP|=16,求点P的轨迹C2的直角坐标方程;
(Ⅱ)设点A的极坐标为(2, ),点B在曲线C2上,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案