精英家教网 > 高中数学 > 题目详情
1.若O为坐标原点,直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别交于A、B两点,直线OA的斜率为-1,则该双曲线的渐近线的斜率为(  )
A.±$\frac{\sqrt{5}}{2}$B.±$\frac{3}{2}$C.±$\frac{\sqrt{30}}{5}$D.±$\frac{3\sqrt{5}}{5}$

分析 利用已知条件求出A的坐标,利用直线OA的斜率为-1,列出方程,转化求解该双曲线的渐近线的斜率即可.

解答 解:若O为坐标原点,直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别交于A、B两点,
y=2b代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1
可得A:(-$\sqrt{5}$a,2b),
直线OA的斜率为-1,可得$\frac{2b}{-\sqrt{5}a}$=-1,可得:$\frac{b}{a}=\frac{\sqrt{5}}{2}$.
该双曲线的渐近线的斜率:$±\frac{\sqrt{5}}{2}$.
故选:A.

点评 本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知长为2的线段A B两端点A和B分别在x轴和y轴上滑动,线段AB的中点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)点P(x,y)是曲线C上的动点,求3x-4y的取值范围;
(Ⅲ)已知定点Q(0,$\frac{2}{3}$),探究是否存在定点T(0,t)(t$≠\frac{2}{3}$)和常数λ满足:对曲线C上任意一点S,都有|ST|=λ|SQ|成立?若存在,求出t和λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,若对一切n∈N*都有an=-3an+1,且$\lim_{n→∞}({a_2}+{a_4}+{a_6}+…+{a_{2n}})$=$\frac{9}{2}$,则a1的值为 -12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课外的兴趣,要求每班第40号学生留下来进行问卷调查,这运用的抽样方法是(  )
A.分层抽样B.抽签法C.随机数表法D.系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1}在一次函数y=x+2的图象上.
(1)求数列{an},{bn}的通项an和bn
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的前n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则a2017=2017•2-2014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.马路有五个路灯,为节约用电又看清路面,可以把其中的一只灯关掉,在两端的灯不能关掉的情况下,满足条件的关灯方法有3种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$AC=\sqrt{7},BC=2,B=60°$,则BC边上的高为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{3\sqrt{3}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=|x|-2的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案