精英家教网 > 高中数学 > 题目详情

 

    已知抛物线过点A(1,-2)。

   (Ⅰ)求抛物线C的方程,并求其准线方程;

   (Ⅱ)是否存在平行于OA(O为坐标原点)的直线,使得直线与抛物线C有公共点,且直线OA与的距离等于?若存在,求出直线的方程;若不存在,说明理由。

 

 

【答案】

 本小题主要考查直线、抛物线等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想,满分12分.

    解:(I)将(1,-2)代入,所以p=2

    故所求的抛物线C的方程为,其准线方程为

   (II)假设存在符合题意的直线其方程为

因为直线与抛物线C有公共点,所以

解得

另一方面,由直线OA与t的距离

解得

因为

所以符合题意的直线存在,其方程为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线过点A(-1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线经过点A(2,1),过A作倾斜角互补的两条不同直线.

(Ⅰ)求抛物线的方程及准线方程;

(Ⅱ)当直线与抛物线相切时,求直线与抛物线所围成封闭区域的面积;

(Ⅲ)设直线分别交抛物线BC两点(均不与A重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线过点A(-1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程(  )
A.
x2
3
+
y2
4
=1(y≠0)
B.
x2
4
+
y2
3
=1(y≠0)
C.
x2
3
-
y2
4
=1(y≠0)
D.
x2
4
-
y2
3
=1(y≠0)

查看答案和解析>>

科目:高中数学 来源:2011年山东省济南市平阴县高考数学模拟试卷(文科)(解析版) 题型:选择题

已知抛物线过点A(-1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程( )
A.+=1(y≠0)
B.+=1(y≠0)
C.-=1(y≠0)
D.-=1(y≠0)

查看答案和解析>>

同步练习册答案