精英家教网 > 高中数学 > 题目详情
16.在复平面内,复数$\frac{1}{1+i}$+i所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数$\frac{1}{1+i}$+i=$\frac{1-i}{(1+i)(1-i)}$+i=$\frac{1-i}{2}$+i=$\frac{1}{2}+\frac{1}{2}i$所对应的点$(\frac{1}{2},\frac{1}{2})$位于第一象限,
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列函数中,为对数函数的是(  )
A.y=lnxB.x=log327C.y=log-2xD.y=5x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集为R,集合A={x|($\frac{1}{2}$)x≤1},B={x|x≥2},A∩(∁RB)=(  )
A.[0,2)B.[0,2]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点E,F分别在线段AB,AC上,且EF∥BC,将△AEF沿EF折起到△PEF的位置,使得二面角P-EF-B的大小为60°(如图2).
(1)求证:EF⊥PB;
(2)若点E为AB的中点,求直线PC与平面BCFE所成角的正切值;
(3)求四棱锥P-CBFE体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理)数列{an}的前n项和为Sn,且a1=1,对任意n∈N+,有an+1=$\frac{2}{3}$Sn,则an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{2}{3}×(\frac{5}{3})^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|0≤x≤2},B={x|x<0或x>1},则A∩B=(  )
A.(-∞,1]∪(2,+∞)B.(-∞,0)∪(1,2)C.(1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C的顶点为坐标原点,焦点为F(0,1),
(1)求抛物线C的方程;
(2)过点F作直线l交抛物线于A,B两点,若直线AO,BO分别与直线y=x-2交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-2≤x≤2},B={x|a+1<x<2a-3}
①若A∪B=B,求实数a的取值范围.
②若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>0,b>0,且a+b=ab,则a+$\frac{b}{4}$的最小值为(  )
A.1B.$\frac{7}{4}$C.2D.$\frac{9}{4}$

查看答案和解析>>

同步练习册答案