精英家教网 > 高中数学 > 题目详情

【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

【答案】
(1)解:因为矩形纸板ABCD的面积为3600,故当a=90时,b=40,

从而包装盒子的侧面积S=2×x(90﹣2x)+2×x(40﹣2x)=﹣8x2+260x,x∈(0,20)

因为S=﹣8x2+260x=﹣8(x﹣16.25)2+2112.5,

故当x=16.25时,侧面积最大,最大值为2112.5平方厘米


(2)解:包装盒子的体积V=(a﹣2x)(b﹣2x)x=x[ab﹣2(a+b)x+4x2],x∈(0, ),b≤60.

V=x[ab﹣2(a+b)x+4x2]≤x(ab﹣4 x+4x2)=x(3600﹣240x+4x)

=4x3﹣240x2+3600x.

当且仅当a=b=60时等号成立.

设f(x)=4x3﹣240x2+3600x,x∈(0,30).则f′(x)=12(x﹣10)(x﹣30).

于是当0<x<10时,f′(x)>0,所以f(x)在(0,10)上单调递增;

当10<x<30时,f′(x)<0,所以f(x)在(10,30)上单调递减.

因此当x=10时,f(x)有最大值f(10)=16000,此时a=b=60,x=10.

答:当a=b=60,x=10时纸盒的体积最大,最大值为16000立方厘米


【解析】(1)当a=90时,b=40,求出侧面积,利用配方法求纸盒侧面积的最大值;(2)表示出体积,利用基本不等式,导数知识,即可确定a,b,x的值,使得纸盒的体积最大,并求出最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了检验设备M与设备N的生产效率,研究人员作出统计,得到如下表所示的结果,则

设备M

设备N

生产出的合格产品

48

43

生产出的不合格产品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

参考公式:,其中.

A. 有90%的把握认为生产的产品质量与设备的选择有关

B. 没有90%的把握认为生产的产品质量与设备的选择有关

C. 可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择有关

D. 不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱ABCA1B1C1中,侧面AA1C1C是菱形,AC1A1C交于点O,点EAB的中点.

(1)求证:OE∥平面BCC1B1.

(2)AC1A1B,求证:AC1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn
(1)求p2的值;
(2)证明:pn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为(

A. 1个B. 2个C. 3个D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2﹣e)x. ①求函数h(x)=f (x)﹣g (x)的单调区间;
②若函数F(x)= 的值域为R,求实数m的取值范围;
(2)若存在实数x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求证:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列{cn},如果存在常数p、q使得cn+1=pcn+q对任意n∈N*都成立,则称{cn}为“M类数列”.

(1)若{an}是公差为d的等差数列,判断{an}是否为“M类数列”,并说明理由;

(2)若{an}是“M类数列”且满足:a1=2,an+an+1=32n

①求a2、a3的值及{an}的通项公式;

②设数列{bn}满足:对任意的正整数n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合M={n|≥λ,n∈N*}中有且仅有3个元素,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把圆分成个扇形,设用4种颜色给这些扇形染色,每个扇形恰染一种颜色,并且要求相邻扇形的颜色互不相同,设共有种方法.

(1)写出的值

(2)猜想 ,并用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一款6吋大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

45

75

90

60

30

(Ⅰ)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

同步练习册答案