精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

82

81

79

78

95

88

93

84

92

95

80

75

83

80

90

85


(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.

【答案】
(1)解:茎叶图如下:


(2)解:派甲参加比较合适,理由如下:

(90﹣85)2+(92﹣85)2+(95﹣85)2]=41

=

∴甲的成绩较稳定,派甲参赛比较合适


【解析】(1)将成绩的十位数作为茎,个位数作为叶,可得茎叶图;(2)计算甲与乙的平均数与方差,即可求得结论.
【考点精析】认真审题,首先需要了解茎叶图(茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少),还要掌握平均数、中位数、众数(⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】化简下列各式:
(1)sin23°cos7°+cos23°sin367°;
(2)(1+lg5)0+(﹣ +lg ﹣lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,把所得到的图象再向左平移 单位,得到的函数y=g(x)的图象,求函数y=g(x)在区间 上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),五边形中, .如图(2),将沿折到的位置,得到四棱锥.点为线段的中点,且平面

(1)求证:平面平面

(2)若直线所成角的正切值为,设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,直线被椭圆截得的线段长为.

(Ⅰ)求椭圆的方程;

(Ⅱ)过原点的直线与椭圆交于 两点( 不是椭圆的顶点),点在椭圆上,且.直线轴、轴分别交于两点.设直线的斜率分别为,证明存在常数使得,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)与向量 =(2,sinC)共线,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为

查看答案和解析>>

同步练习册答案