精英家教网 > 高中数学 > 题目详情

【题目】三棱锥中, 互相垂直, 是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是(  )

A. B. C. D.

【答案】B

【解析】是线段上一动点,连接互相垂直,∴就是直线与平面所成角,当最短时,即时直线与平面所成角的正切的最大.

此时 ,在直角△中,

三棱锥扩充为长方体,则长方体的对角线长为

∴三棱锥的外接球的半径为

∴三棱锥的外接球的表面积为

B.

点睛:空间几何体与球接、切问题的求解方法

(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若对于x>0, ≤a恒成立,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的最大值为6,求常数的值;

(2)若函数有两个零点,求的取值范围,并求的值;

(3)在(1)的条件下,若,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面α与平面β相交于直线l,l1在平面α内,l2在平面β内,若直线l1和l2是异面直线,则下列说法正确的是(
A.l与都相交l1 , l2
B.l至少与l1 , l2中的一条相交
C.l至多与l1 , l2中的一条相交
D.l与l1 , l2都不相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,侧棱 分别为棱的中点, 分别为线段的中点.

(1)求证:直线平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+ (a>0)在区间 上单调递减,在区间 上单调递增;函数
(1)请写出函数f(x)=x2+ (a>0)与函数g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的单调区间(只写结论,不证明);
(2)求函数h(x)的最值;
(3)讨论方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.

(1)求证:平面C1CD⊥平面ABC;
(2)求证:AC1∥平面CDB1
(3)求三棱锥D﹣CAB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.

(1)求证:AB∥平面CDE;
(2)求证:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若命题p:曲线 =1为双曲线,命题q:函数f(x)=(4﹣a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是

查看答案和解析>>

同步练习册答案