【题目】(本题满分分)设数列的前项和为,已知,,.
(1)求数列的通项公式;
(2)证明:对一切正整数,有.
【答案】(1);(2)详见解析.
【解析】
试题分析:(1)求数列的通项公式,由已知,即,这是已知与的关系,求,可用来解,本题也可以由,与,求出,猜想出数列的通项公式,再用数学归纳法证明;(2)证明:对一切正整数,有,由(1)知,,故,可用放缩法来证.
试题解析:(1)(解法一) 依题意,又,所以 (2分)
当,
,
两式相减得
整理得 ,即, (6分)
又,故数列是首项为1,公差为1的等差数列,
所以所以 (8分)
(解法二) , ,得, (2分)
猜想 (3分)
下面用数学归纳法证明:
(1)当时,猜想成立;
(2)假设当时,猜想也成立,即 (4分)
当时,
=
, (5分)
时,猜想也成立 (6分)
由(1),(2)知,对于,猜想成立.
,当,也满足此式,故 (8分)
(2)证明:当; (9分)
当; (10分)
当, (12分)
此时
综上,对一切正整数n,有 (14分)
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为,丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.
(Ⅰ)求的值;
(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①已知集合A={1,a},B={1,2,3},则“a=3”是“AB”的充分不必要条件;
②“x<0”是“ln(x+1)<0”的必要不充分条件;
③“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的充要条件;
④“平面向量 与 的夹角是钝角”的充要条件的“ <0”.
其中正确命题的序号是(把所有正确命题的序号都写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)
在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.
(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)
如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)
(1)求摄影者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,如表是在某单位得到的数据(人数):
(1)能否有90%以上的把握认为对这一问题的看法与性别有关?
赞同 | 反对 | 合计 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合计 | 16 | 9 | 25 |
(2)从赞同“男女延迟退休”16人中选出3人进行陈 述发言,求事件“男士和女士各至少有1人发言”的概率;
(3)若以这25人的样本数据来估计整个地区的总体数据,现从该地区(人数很多)任选5人,记赞同“男女延迟退休”的人数为X,求X的数学期望.
附:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.
(1)求该网民至少购买4种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com