精英家教网 > 高中数学 > 题目详情

【题目】本题满分设数列的前项和为,已知.

1求数列的通项公式;

2证明:对一切正整数,有.

【答案】12详见解析.

【解析】

试题分析:1求数列的通项公式,由已知,即,这是已知的关系,求,可用来解,本题也可以由,与,求出,猜想出数列的通项公式,再用数学归纳法证明;2证明:对一切正整数,有,由1知,,可用放缩法来证.

试题解析:1)(解法一 依题意,,所以 2分

两式相减得

整理得 ,即 6分

,故数列是首项为1,公差为1的等差数列,

所以所以 8分

解法二 ,得 2分

猜想 3分

下面用数学归纳法证明:

1时,猜想成立;

2假设当时,猜想也成立,即 4分

时,

=

5分

时,猜想也成立 6分

12知,对于,猜想成立.

,当,也满足此式,故 8分

2证明:当 9分

10分

12分

此时

综上,对一切正整数n,有 14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017山西三区八校二模】已知函数(其中 为常数且)在处取得极值.

(Ⅰ)当时,求的单调区间;

(Ⅱ)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为备战年瑞典乒乓球世界锦标赛,乒乓球队举行公开选拨赛,甲、乙、丙三名选手入围最终单打比赛名单.现甲、乙、丙三人进行队内单打对抗比赛,每两人比赛一场,共赛三场每场比赛胜者得分,负者得分,在每一场比赛中,甲胜乙的概率为丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.

(Ⅰ)求的值

(Ⅱ)设在该次对抗比赛中,丙得分为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①已知集合A={1,a},B={1,2,3},则“a=3”是“AB”的充分不必要条件;
②“x<0”是“ln(x+1)<0”的必要不充分条件;
③“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的充要条件;
④“平面向量 的夹角是钝角”的充要条件的“ <0”.
其中正确命题的序号是(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)

在平面直角坐标系xOy中,椭圆C:(ab0)的上顶点到焦点的距离为2,离心率为

(1)求a,b的值.

(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.

若k=1,求OAB面积的最大值;

)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)

(1)求摄影者到立柱的水平距离和立柱的高度;

(2)立柱的顶端有一长2米的彩杆绕中点与立柱所在的平面内旋转摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,如表是在某单位得到的数据(人数):
(1)能否有90%以上的把握认为对这一问题的看法与性别有关?

赞同

反对

合计

5

6

11

11

3

14

合计

16

9

25


(2)从赞同“男女延迟退休”16人中选出3人进行陈 述发言,求事件“男士和女士各至少有1人发言”的概率;
(3)若以这25人的样本数据来估计整个地区的总体数据,现从该地区(人数很多)任选5人,记赞同“男女延迟退休”的人数为X,求X的数学期望.
附:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

1)求该网民至少购买4种商品的概率;

2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

同步练习册答案