精英家教网 > 高中数学 > 题目详情

【题目】已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为 ,BC= ,AC=1,∠ACB=90°,则此球的体积等于(
A. π
B. π
C. π
D.8π

【答案】C
【解析】解:∵三棱柱ABC﹣A1B1C1的侧棱垂直于底面,棱柱的体积为 ,BC= ,AC=1,∠ACB=90°,

AA1=

∴AA1=2,

∵BC= ,AC=1,∠ACB=90°,△ABC外接圆的半径R=1,

∴外接球的半径为 =

∴球的体积等于 = π,

故选:C.

利用三棱柱ABC﹣A1B1C1的侧棱垂直于底面,棱柱的体积为为 ,BC= ,AC=1,∠ACB=90°,求出AA1,再求出△ABC外接圆的半径,即可求得球的半径,从而可求球的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,点M是SD的中点,AN⊥SC,且交SC于点N.

(1)求证:SC⊥平面AMN;
(2)求二面角D﹣AC﹣M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们把形如 的函数称为幂指函数,幂指函数在求导时,可以利用对法数:在函数解析式两边求对数得 ,两边对x求导数,得 ,于是 ,运用此方法可以求得函数 在(1,1)处的切线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.

(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)若点E是线段DB上的中点,求三棱锥E﹣ABM的体积V1与四棱锥D﹣ABCM的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=1,AB=2.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD;
(3)求点D到平面PMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1= ,M为BC的中点,P为侧棱BB1上的动点.
(1)求证:平面APM⊥平面BB1C1C;
(2)试判断直线BC1与AP是否能够垂直.若能垂直,求PB的长;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则关于f(x)的说法正确的是(
A.对称轴方程是x= +2kπ(k∈Z)
B.φ=﹣
C.最小正周期为π
D.在区间( )上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方体ABCD﹣A1B1C1D1 , M,N分别为A1D1和AA1的中点,则下列说法中正确的个数为(
①C1M∥AC;
②BD1⊥AC;
③BC1与AC的所成角为60°;
④B1A1、C1M、BN三条直线交于一点.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断错误的是(
A.命题“若xy=0,则x=0”的否命题为“若xy≠0,则x≠0”
B.命题“?x∈R,x2﹣x﹣1≤0”的否定是“
C.若p,q均为假命题,则p∧q为假命题
D.命题“?x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件是a≥4

查看答案和解析>>

同步练习册答案