精英家教网 > 高中数学 > 题目详情

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

【答案】(1) ;(2).

【解析】试题分析:(1)分析题意,先用表示先用表示代入化简即可;(2)求出满足的约束条件,由约束条件画出可行域,要求走得最经济即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优.

试题解析:(1) ,得

,得

所以 (其中)

(2)

其中

令目标函数,可行域的端点分别为

则当时,

所以 (元),此时

答:当时,所需要的费用最少,为元.

【方法点晴】本题主要考查线性规划的应用及求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量主要受污染物排放量及大气扩散等因素的影响,某市环保监测站2014年10月连续10天(从左到右对应1号至10号)采集该市某地平均风速及空气中氧化物的日均浓度数据,制成散点图如图所示.

(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;

(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.

预测效果好

拟合效果不好

合计

数据有包含最值

5

数据无包含最值

4

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ,求| |
(2)若 夹角为锐角,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2sin(2xφ)(0φ2π)的图象过点(,-2)

1)求φ的值;

2)若f(),-α0,求sin(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线的准线为,取过焦点且平行于轴的直线与抛物线交于不同的两点,过作圆心为的圆,使抛物线上其余点均在圆外,且. 

(Ⅰ)求抛物线和圆的方程;

(Ⅱ)过点作直线与抛物线和圆依次交于,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:

(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥ABCD﹣PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若在点处的切线与直线垂直,求实数的值;

(2)求函数的单调区间;

(3)讨论函数在区间上零点的个数.

查看答案和解析>>

同步练习册答案