精英家教网 > 高中数学 > 题目详情
16.已知函数y=f(x)(x∈R)满足:f(x+2)=f(x),且当x∈[-1,1]时,f(x)=x2,那么方程f(x)=|lgx|的解的个数为(  )
A.1个B.8个C.9个D.10个

分析 f(x)是周期为2的周期函数,作出y=f(x)和y=|lgx|两个函数的图象,利用数形结合思想能求出方程f(x)=|lgx|的解的个数.

解答 解:函数y=f(x)(x∈R)满足:f(x+2)=f(x),
∴f(x)是周期为2的周期函数,
∵当x∈[-1,1]时,f(x)=x2
∴作出y=f(x)和y=|lgx|两个函数的图象,如下图:

结合图象,得:方程f(x)=|lgx|的解的个数为10个.
故选:D.

点评 本题考查方程的解的个数的求法,是中档题,解题时要认真审题,注意二次函数、对数函数的性质及数形结合思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函数y=xg(x)的单调区间;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(结果用t表示);
(Ⅲ)设h(x)=f(x)-$\frac{1}{2}$x2-(2a+1)x+(2a+1)g(x),若a∈[e,3],?x1,x2∈[1,2](x1≠x2),|$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$|≤$\frac{m}{{x}_{1}{x}_{2}}$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+lnx+$\frac{a+1}{x}$
(Ⅰ)若a≥0或a≤-1时,讨论f(x)的单调性;
(Ⅱ)证明:f(x)至多一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.盒内放有大小相同的10个小球,其中有5个红球,3个白球,2个黄球,从中任取2个球,求其中至少有1个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线m、n与平面α,β,m⊥α,n⊥β,若α⊥β,则m、n的位置关系是(  )
A.平行B.垂直C.相交D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知电子发射管发射的电子是随机的从电子发射管射出的,当一束电子从电子发射管射出后随机的落在以2a为边长的正三角形屏幕的内切圆区域内,则电子落在该区域的概率是$\frac{\sqrt{3}}{9}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}}\right.$,则目标函数z=-2x+y的最大值为(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\frac{\sqrt{2-ax}}{a-1}$在[0,$\frac{1}{2}$]上是减函数,则a的取值范围是a<0或1<a≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案