精英家教网 > 高中数学 > 题目详情
(2013•浙江二模)已知函数f(x)=
x+
1
x
,x>0
x3+9,x≤0
,若关于x的方程f(x2+2x)=a(a∈R)有六个不同的实根,则a的取值范围是(  )
分析:令t=x2+2x,则t≥-1,f(t)=
t+
1
t
, t>0
t3+9 ,-1≤t≤0
.由题意可得,函数f(t)的图象与直线y=a 有3个不同的交点,且每个t值有2个x值与之对应,数形结合可得a的取值范围.
解答:解:令t=x2+2x=(x+1)2-1,则t≥-1,
函数f(t)=
t+
1
t
, t>0
t3+9 ,-1≤t≤0

由题意可得,函数f(t)的图象与直线y=a 有3个不同的交点,
且每个t值有2个x值与之对应,如图所示:
由于当t=-1时,f(t)=8,此时,t=-1对应的x值只有一个x=-1,不满足条件,故a的取值范围是 (8,9],
故选C.
点评:本题主要考查函数的零点与方程的根的关系,体现了数形结合的数学思想及等价转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江二模)对数函数y=logax(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)设m、n为空间的两条不同的直线,α、β为空间的两个不同的平面,给出下列命题:
①若m∥α,m∥β,则α∥β;
②若m⊥α,m⊥β,则α∥β;
③若m∥α,n∥α,则m∥n;
④若m⊥α,n⊥α,则m∥n.
上述命题中,所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江二模)如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x1,y1),B(x2,y2
(1)求y1+y2的值;
(2)若y1≥0,y2≥0,求△PAB面积的最大值.

查看答案和解析>>

同步练习册答案