【题目】已知圆C的圆心在直线3x﹣y=0上且在第一象限,圆C与x相切,且被直线x﹣y=0截得的弦长为2 .
(1)求圆C的方程;
(2)若P(x,y)是圆C上的点,满足 x+y﹣m≤0恒成立,求m的范围.
【答案】
(1)解:设圆心为(3t,t),半径为r=|3t|,
则圆心到直线y=x的距离 ,
而 =r2﹣d2,
∴9t2﹣2t2=7,
∴t=±1,
∴(x﹣3)2+(y﹣1)2=9或(x+3)2+(y+1)2=9.
∴圆心在第一象限的圆是(x﹣3)2+(y﹣1)2=9
(2)解:由题知,m≥( x+y)max.
设x=1+3cosθ,y=3+3sinθ,
则 x+y= (1+3cosθ)+(3+3sinθ)=6sin(θ+ )+3+
∴6sin(θ+ )=1时,( x+y)max=9+
∴m≥9+
【解析】(1)本小题根据圆的半径,弦长的一般与圆心到弦的距离组成的直角三角形求得,进而求得t的 值,再结合圆心在第一象限求得圆的方程;(2)对于圆,可以转化为x=a+rcosθ,y=b+rsinθ,这样可以根据三角函数的取值范围求得相关代数式的取值范围.
【考点精析】本题主要考查了三角函数的最值的相关知识点,需要掌握函数,当时,取得最小值为;当时,取得最大值为,则,,才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某公司一年需购买某种原料600吨,设公司每次都购买吨,每次运费为3万元,一年的总存储费为万元,一年的总运费与总存储费之和为(单位:万元).
(1)试用解析式得表示成的函数;
(2)当为何值时, 取得最小值?并求出的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2;数列{bn}的前n项和为Tn , 且满足b1=1,b2=2, .
(1)求数列{an}、{bn}的通项公式;
(2)是否存在正整数n,使得 恰为数列{bn}中的一项?若存在,求所有满足要求的bn;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某商品在过去20天的日销售量和日销售价格均为销售时间t(天)的函数,日销售量(单位:件)近似地满足: ,日销售价格(单位:元)近似地满
足:
(I)写出该商品的日销售额S关于时间t的函数关系;
(Ⅱ)当t等于多少时,日销售额S最大?并求出最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】集合由满足以下性质的函数组成:①在上是增函数;②对于任意的, .已知函数, .
(1)试判断, 是否属于集合,并说明理由;
(2)将(1)中你认为属于集合的函数记为.
(ⅰ)试用列举法表示集合;
(ⅱ)若函数在区间上的值域为,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用“斜二测”画法画出△ABC(A为坐标原点,AB在x轴上)的直观图为△A′B′C′,则△A′B′C′的面积与△ABC的面积的比为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了绿化城市,要在矩形区域ABCD内建一个矩形草坪,如图所示,另外,△AEF内部有一文物保护区不能占用,经测量AB=100 m,BC=80 m,AE=30 m,AF=20 m,应如何设计才能使草坪面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】浦东新区某镇投入资金进行生态环境建设,2017年度计划投入800万元,以后每年投入将比上一年减少 ,今年该镇旅游收入估计500万元,由于该项建设对旅游的促进作用,预计今后的旅游收入每年会比上一年增加 ;
(1)设n年内(今年为第一年)总投入为an万元,旅游总收入为bn万元,写出an , bn的表达式;
(2)至少经过几年,旅游业的总收入才能超过总投入.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com