精英家教网 > 高中数学 > 题目详情

【题目】下列说法中正确的是

A. 先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为的学生,这样的抽样方法是分层抽样法

B. 线性回归直线不一定过样本中心点

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D. 若一组数据1、、3的平均数是2,则该组数据的方差是

【答案】D

【解析】对于先把高三年级的2000名学生编号:12000,再从编号为15050名学生中随机抽取1名学生,其编号为,然后抽取编号为的学生,这样的抽样方法是系统抽样错误;对于线性回归直线一定过样本中心点错误;对于若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1错误;对于若一组数据1、、3的平均数是2,则,则该组数据的方差是,故正确

故选

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在极坐标系中,已直曲线,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线,且直线C1交于AB两点,

1求曲线C1的直角坐标方程,并说明它是什么曲线;

2)设定点, 求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)求函数的单调区间;

(Ⅱ)设,其中为函数的导函数.判断在定义域内是否为单调函数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}各项均为正数其前n项和为Sna11anan12Sn.(nN*)

()求数列{an}的通项公式;

()求数列{n·}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.

参考公式:回归直线的方程是

其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求曲线处的切线方程.

)求的单调区间.

)设,其中,证明:函数仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(xa)(xb)(其中ab),若f(x)的图象如图所示,则函数g(x)=axb的图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,若方程有两个相异实根,且,证明: .

查看答案和解析>>

同步练习册答案