精英家教网 > 高中数学 > 题目详情

【题目】现有一个关于平面图形的命题:如图所示,同一平面内有两个边长都是a的正方形,其中一个正方形的某顶点在另一个正方形的中心,则这两个正方形重叠部分的面积恒为,类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为__________.

A.B.C.D.

【答案】C

【解析】

根据正方形中,其中一个的某顶点在另一个的中心,则这两个正方形重叠的部分的面积恒为,结合正方体的结构特征,即可类比推理出两个正方体重叠部分的体积,得到答案.

由题意,因为同一个平面内有两个边长都是的正方形,其中一个的某顶点在另一个的中心,

则这两个正方形重叠的部分的面积恒为

类比到空间中由两个棱长均为的正方体,其中一个的某顶点在另一个的中心,

则这两个正方体的重叠部分的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的最大值;

(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足:对于st∈[0+∞),都有f(s)≥0f(t)≥0,且f(s)+f(t)≤f(s+t)则称函数f (x)“T函数”.

(I)试判断函数f1(x)=x2f2(x)=lg(x+1)是否是“T函数”,并说明理由;

(Ⅱ)f (x)“T函数”,且存在x0∈[0+∞),使f(f(x0))=x0.求证f (x0) =x0

(Ⅲ)试写出一个“T函数”f(x)满足f(1)=1,且使集合{y|y=f(x)0≤x≤1)中元素的个数最少.(只需写出结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1 (t为参数,t≠0),其中0≤απ.在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2ρ2sin θC3ρ2cos θ.

(1)C2C3交点的直角坐标;

(2)C1C2相交于点AC1C3相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与函数图像交于异于原点不同的两点且点若点满足,则( )

A. B. 2 C. 4 D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,恒有时,

求证: 是奇函数;

,试求在区间上的最值;

)是否存在,使对于任意恒成立若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )

A.分层抽样B.回归分析C.独立性检验D.频率分布直方图

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中(底面△ABC为正三角形),A1A⊥平面ABCAB=AC=2DBC边的中点.

1)证明:平面ADB1⊥平面BB1C1C

2)求点B到平面ADB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过点.

(1)若直线与圆相切,求直线的方程;

(2)若直线与圆交于两点,当的面积最大时,求直线的方程.

查看答案和解析>>

同步练习册答案