精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
【答案】分析:(1)将M的坐标代入f(x)的解析式,得到关于a,b的一个等式;求出导函数,求出f′(1)即切线的斜率,利用垂直的两直线的斜率之积为-1,列出关于a,b的另一个等式,解方程组,求出a,b的值.
(2)求出 f′(x),令f′(x)>0,求出函数的单调递增区间,据题意知[m,m+1]⊆(-∝,-2]∪[0,+∝),列出端点的大小,求出m的范围.
解答:解:(1)∵f(x)=ax3+bx2的图象经过点M(1,4),∴a+b=4①式 …(1分)
f'(x)=3ax2+2bx,则f'(1)=3a+2b…(3分)
由条件②式…(5分)
由①②式解得a=1,b=3
(2)f(x)=x3+3x2,f'(x)=3x2+6x,
令f'(x)=3x2+6x≥0得x≥0或x≤-2,…(8分)
∵函数f(x)在区间[m,m+1]上单调递增
∴[m,m+1]⊆(-∝,-2]∪[0,+∝)
∴m≥0或m+1≤-2
∴m≥0或m≤-3
点评:注意函数在切点处的导数值是曲线的切线斜率;直线垂直的充要条件是斜率之积为-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案