精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,点P在抛物线上,且位于x轴上方.若点P到坐标原点O的距离为数学公式,则过F、O、P三点的圆的方程是________.

x2+y2-x-7y=0
分析:根据抛物线方程,求出焦点F的坐标和满足条件|OP|=4的P点的坐标,再设经过F、O、P三点圆的一般式方程,将O、F、P坐标代入,解关于D、E、F的方程组,即可得到所求圆的方程.
解答:∵抛物线的方程为y2=4x,∴抛物线焦点为F(1,0)
设P(,t),则|OP|==4,解之得t=4(舍负),
∴P坐标为(4,4)
设经过F、O、P三点的圆的方程为x2+y2+Dx+Ey+F=0,将O(0,0),F(1,0),P(4,4)代入,得
,解之得D=-1,E=-7,F=0
∴经过F、O、P三点的圆的方程为x2+y2-x-7y=0.
故答案为:x2+y2-x-7y=0
点评:本题给出过抛物线上一点和焦点的圆经过坐标原点,求圆的一般式方程,着重考查了抛物线的标准方程和基本概念、圆的一般式方程等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,点A为椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)的左顶点,B,C在椭圆E上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆E的离心率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图所示).则△AOB得重心G(即三角形三条中线的交点)的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•青浦区一模)在平面直角坐标系xoy中,已知圆C的圆心在第二象限,半径为2
2
且与直线y=x相切于原点O.椭圆
x2
a2
+
y2
9
=1
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)圆C上是否存在点Q,使O、Q关于直线CF(C为圆心,F为椭圆右焦点)对称,若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过抛物线
x=2t
y=t2
(t为参数)的焦点且与直线
x=1-
1
2
l
y=4+
3
2
l
(l为参数)垂直的直线的普通方程.

查看答案和解析>>

同步练习册答案