【题目】已知四棱锥中,底面,,,,是中点.
(1)求证:平面;
(2)求直线和平面所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C: + =1(a>b>0)的左、右焦点分别为F1 , F2 , 点P(3,1)在椭圆上,△PF1F2的面积为2 .
(1)①求椭圆C的标准方程; ②若∠F1QF2= ,求QF1QF2的值.
(2)直线y=x+k与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线,,和圆:相切,则实数的取值范围是( )
A. 或B. 或
C. 或D. 或
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某学段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如右图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)将频率当作概率,请估计该学段学生中百米成绩在[16,17)内的人数以及所有抽取学生的百米成绩的中位数(精确到0.01秒);
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人用一网箱饲养中华鲟,研究表明:一个饲养周期,该网箱中华鲟的产量(单位:百千克)与购买饲料费用()(单位:百元)满足:.另外,饲养过程中还需投入其它费用.若中华鲟的市场价格为元/千克,全部售完后,获得利润元.
(1)求关于的函数关系式;
(2)当为何值时,利润最大,最大利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱柱ABCD﹣A1B1C1D1中,AB= ,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边上,射线OP交球O的表面于点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为( )
A.
B.2 π
C.
D.4 π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且 +…+ =2.则当a2016﹣4a1取得最小值时,a1的值为= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.
(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归直线方程;
(2)若政府不调控,按照3月份至7月份房价的变化趋势预测12月份该市新建住宅的销售均价.
参考数据:,,;
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com