精英家教网 > 高中数学 > 题目详情
(2012•福建)数列{an}的通项公式an=ncos
2
,其前n项和为Sn,则S2012等于(  )
分析:由于an=ncos
2
,a1+a2+a3+a4=a5+a6+a7+a8=…=2,则四项结合的和为定值,可求
解答:解:∵an=ncos
2

又∵f(n)=cos
2
是以T=
π
2
=4
为周期的周期函数
∴a1+a2+a3+a4=(0-2+0+4)=2,a5+a6+a7+a8=(0-6+0+8)=2,

a2009+a2010+a2011+a2012=(0-2010+0+2012)=2,
S2012=a1+a2+a3+a4+…+a2012
=(0-2+0+4)+(0-6+0+8)+…+(0-2010+0+2012)
=2×503=1006
故选A
点评:本题主要考查了由数列的通项求解数列的和,解题的关键是由通项发现四项结合为定值的规律
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建模拟)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 PM2.5(微克/立方米) 频数(天) 频率
第一组 (0,15] 4 0.1
第二组 (15,30] 12 0.3
第三组 (30,45] 8 0.2
第四组 (45,60] 8 0.2
第三组 (60,75] 4 0.1
第四组 (75,90) 4 0.1
(Ⅰ)写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(Ⅲ)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为ξ,求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 PM2.5浓度
(微克/立方米)
频数(天) 频率
  第一组 (0,25] 5 0.25
第二组 (25,50] 10 0.5
第三组 (50,75] 3 0.15
第四组 (75,100) 2 0.1
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(Ⅱ)求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•福建模拟)执行如图所示的程序框图,若输出的结果是8,则输入的数是(  )

查看答案和解析>>

同步练习册答案