【题目】已知向量 与 互相垂直,其中 .
(1)求sinθ和cosθ的值;
(2)若 , 求cosφ的值.
【答案】
(1)解:∵ 与 互相垂直,则 ,
即sinθ=2cosθ,代入sin2θ+cos2θ=1得 ,又 ,
∴
(2)解:0<φ< , ,
∴﹣ <θ﹣φ< ,则cos(θ﹣φ)= = ,
∴cosφ=cos[θ﹣(θ﹣φ)]=cosθcos(θ﹣φ)+sinθsin(θ﹣φ)=
【解析】(1)根据两向量垂直,求得sinθ和cosθ的关系代入sin2θ+cos2θ=1中求得sinθ和cosθ的值.(2)先利用φ和θ的范围确定θ﹣φ的范围,进而利用同角三角函数基本关系求得cos(θ﹣φ)的值,进而利用cosφ=cos[θ﹣(θ﹣)]根据两角和公式求得答案.
【考点精析】本题主要考查了同角三角函数基本关系的运用的相关知识点,需要掌握同角三角函数的基本关系:;;(3) 倒数关系:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】函数y=f(x)的定义域为(﹣a,0)∪(0,a)(0<a<1),其图象上任意一点P(x,y)满足x2+y2=1,则给出以下四个命题:①函数y=f(x)一定是偶函数;②函数y=f(x)可能是奇函数;③函数y=f(x)在(0,a)上单调递增④若函数y=f(x)是偶函数,则其值域为(a2 , 1)其中正确的命题个数为( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某旅游区拟建一主题游乐园,该游乐区为五边形区域ABCDE,其中三角形区域ABE为主题游乐区,四边形区域为BCDE为休闲游乐区,AB、BC,CD,DE,EA,BE为游乐园的主要道路(不考虑宽度)..
(I)求道路BE的长度;
(Ⅱ)求道路AB,AE长度之和的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线E上任意一点P到两个定点 和 的距离之和为4,
(1)求动点P的方程;
(2)设过(0,﹣2)的直线l与曲线E交于C、D两点,且 (O为坐标原点),求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个不透明的袋子中装有个形状相同的小球,分别标有不同的数字,现从袋中随机摸出个球,并计算摸出的这个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验.记事件为“数字之和为”.试验数据如下表:
(1)如果试验继续下去,根据上表数据,出现“数字之和为”的频率将稳定在它的概率附近.试估计“出现数字之和为”的概率,并求的值;
(2)在(1)的条件下,设定一种游戏规则:每次摸球,若数字和为,则可获得奖金元,否则需交元.某人摸球次,设其获利金额为随机变量元,求的数学期望和方差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公车私用、超编配车等现象一直饱受诟病,省机关事务管理局认真贯彻落实党中央、国务院有关公务用车配备使用管理办法,积极推进公务用车制度改革.某机关单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.为配合用车制度对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5,该地区汽车限行规定如下:
车尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
现将汽车日出车频率理解为日出车概率,且A,B两车出车情况相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com