精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为,一双曲线的顶点是该椭圆的焦点,且它的实轴长等于虚轴长,设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为,其中轴的同一侧.

(1)求椭圆和双曲线的标准方程;

(2)是否存在题设中的点,使得?若存在, 求出点的坐标;若不存在,请说明理由.

【答案】(1)(2)

【解析】试题分析:(1)由椭圆定义可得 ,再结合离心率为 ,解出,由双曲线的顶点是该椭圆的焦点,得,再根据实轴长等于虚轴长得(2)设P点坐标,利用点斜式表示直线AB,CD方程,利用韦达定理及弦长公式求;根据椭圆性质确定直线AB,CD斜率关系,根据焦点三角形求向量夹角,综合条件可解得P点坐标

试题解析:解:(1)由题意知,椭圆离心率为 ,得,又 ,所以可解得,所以,所以椭圆的标准方程为;所以椭圆的焦点坐标为(,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为

(2)设,则在双曲线上,,设 方程为

的方程为,设,则

同理,, 由题知,

.

,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2-2ax+5

1)若fx)的定义域和值域均是[1a],求实数a的值;

2)若a≤1,求函数y=|fx|[01]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知,B为AC的中点,分别以AB,AC为直径在AC的同侧作半圆,M,N分别为两半圆上的动点不含端点A,B,,且,则的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为,曲线的参数方程是,(为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)设直线与曲线交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=,设bn=,n∈N*。

(1)证明{bn}是等比数列(指出首项和公比);

(2)求数列{log2bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括:①赡养老人费用,②子女教育费用,③继续教育费用,④大病医疗费用等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元,②子女教育费用:每个子女每月扣除1000元,新的个税政策的税率表部分内容如下:

级数

一级

二级

三级

每月应纳税所得额元(含税)

税率

3

10

20

现有李某月收入为18000元,膝下有一名子女在读高三,需赡养老人,除此之外无其它专项附加扣除,则他该月应交纳的个税金额为(

A.1800B.1000C.790D.560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.

某学校为了了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有6人

6

6

3

1

2

0

选考方案待确定的有8人

5

4

0

1

2

1

女生

选考方案确定的有10人

8

9

6

3

3

1

选考方案待确定的有6人

5

4

0

0

1

1

(Ⅰ)试估计该学校高一年级确定选考生物的学生有多少人?

(Ⅱ)写出选考方案确定的男生中选择“物理、化学和地理”的人数.(直接写出结果)

(Ⅲ)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

查看答案和解析>>

同步练习册答案