精英家教网 > 高中数学 > 题目详情

【题目】已知点Mxy)满足

1)求点M的轨迹E的方程;

2)设过点N(﹣10)的直线l与曲线E交于AB两点,若OAB的面积为O为坐标原点).求直线l的方程.

【答案】(1)(2)

【解析】

1)根据几何意义可知,点满足动点到定点的距离和为,且,所以点满足椭圆的定义,写出轨迹方程;(2)首先分直线轴垂直和轴不垂直两种情况讨论,当斜率存在时,与椭圆方程联立,设交点,根据条件可知 ,即,利用根与系数的关系求,即得直线的方程.

解:(1)由已知,动点到点的距离之和为

,所以动点的轨迹为椭圆.,所以

所以动点的轨迹的方程为.

2)当直线轴垂直时,,此时

,不满足条件.

当直线轴不垂直时,设直线的方程为

所以.

.

所以,则,所以

所以直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数不超过35人时,飞机票每张收费800元;若旅游团的人数多于35人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有60人.设旅行团的人数为人,飞机票价格为元,旅行社的利润为元.

(1)写出飞机票价格元与旅行团人数之间的函数关系式;

(2)当旅游团的人数为多少时,旅行社可获得最大利润?求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

①函数的最大值为1

“若,则”的逆命题为真命题;

③若为锐角三角形,则有

④“”是“函数在区间内单调递增”的充分必要条件.

其中所有正确命题的序号为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产企业研发了一种新产品,该新产品在某网店试销一个阶段后得到销售单价和月销售量之间的一组数据,如下表所示:

销售单价(元)

9

9.5

10

10.5

11

月销售量(万件)

11

10

8

6

5

(I)根据统计数据,求出关于的回归直线方程,并预测月销售量不低于12万件时销售单价的最大值;

(II)生产企业与网店约定:若该新产品的月销售量不低于10万件,则生产企业奖励网店1万元;若月销售量不低于8万件且不足10万件,则生产企业奖励网店5000元;若月销售量低于8万件,则没有奖励. 现用样本估计总体,从上述5个销售单价中任选2个销售单价,求抽到的产品含有月销售量不低于10万件的概率.

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为. 参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数(.

1)求实数的值;

2)试判断函数上的单调性,并证明你的结论;

3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)讨论函数的单调性;

2)若,且时有极大值点,求证:.

查看答案和解析>>

同步练习册答案